Fabrication of a modular tissue construct in a microfluidic chip

被引:74
作者
Bruzewicz, Derek A. [1 ]
McGuigan, Alison P. [1 ]
Whitesides, George M. [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1039/b719806j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
By combining microfluidics and soft-lithographic molding of gels containing mammalian cells, a device for three-dimensional (3D) culture of mammalian cells in microchannels was developed. Native components of the extracellular matrix, including collagen or Matrigel (TM), made up the matrix of each molded piece (module) of cell-containing gel. Each module had at least one dimension below similar to 300 mu m; in modules of these sizes, the flux of oxygen, nutrients, and metabolic products into and out of the modules was sufficient to allow cells in the modules to proliferate to densities comparable to those of native tissue (10(8)-10(9) cells cm(-3)). Packing modules loosely into microfluidic channels and chambers yielded structures permeated with a network of pores through which cell culture medium could flow to feed the encapsulated cells. The order in the packed assemblies increased as the width of the microchannels approached the width of the modules. Multiple cell types could be spatially organized in the small microfluidic channels. Recovery and analysis of modules after 24 h under constant flow of medium (200 mu L h(-1)) showed that over 99% of encapsulated cells survived this interval in the microfluidic chamber.
引用
收藏
页码:663 / 671
页数:9
相关论文
共 59 条
[1]   Structural polarity and functional bile canaliculi in rat hepatocyte spheroids [J].
Abu-Absi, SF ;
Friend, JR ;
Hansen, LK ;
Hu, WS .
EXPERIMENTAL CELL RESEARCH, 2002, 274 (01) :56-67
[2]   Photo- and electropatterning of hydrogel-encapsulated living cell arrays [J].
Albrecht, DR ;
Tsang, VL ;
Sah, RL ;
Bhatia, SN .
LAB ON A CHIP, 2005, 5 (01) :111-118
[3]   Probing the role of multicellular organization in three-dimensional microenvironments [J].
Albrecht, DR ;
Underhill, GH ;
Wassermann, TB ;
Sah, RL ;
Bhatia, SN .
NATURE METHODS, 2006, 3 (05) :369-375
[4]  
Avgoustiniatos E.S., 1997, Principles of Tissue Engineering, P333
[5]   Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels [J].
Barralet, JE ;
Wang, L ;
Lawson, M ;
Triffitt, JT ;
Cooper, PR ;
Shelton, RM .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2005, 16 (06) :515-519
[6]   PRODUCTION OF A TISSUE-LIKE STRUCTURE BY CONTRACTION OF COLLAGEN LATTICES BY HUMAN-FIBROBLASTS OF DIFFERENT PROLIFERATIVE POTENTIAL INVITRO [J].
BELL, E ;
IVARSSON, B ;
MERRILL, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (03) :1274-1278
[7]   The effect of soluble peptide sequences on neurite extension on 2D collagen substrates and within 3D collagen gels [J].
Blewitt, Matthew J. ;
Willits, Rebecca Kuntz .
ANNALS OF BIOMEDICAL ENGINEERING, 2007, 35 (12) :2159-2167
[8]   Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems [J].
Chiu, DT ;
Jeon, NL ;
Huang, S ;
Kane, RS ;
Wargo, CJ ;
Choi, IS ;
Ingber, DE ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2408-2413
[9]  
Ehrlich HP, 2000, J CELL PHYSIOL, V185, P432, DOI 10.1002/1097-4652(200012)185:3<432::AID-JCP14>3.0.CO
[10]  
2-R