Retention of native-like oligomerization states in transmembrane segment peptides:: Application to the Escherichia coli aspartate receptor

被引:89
作者
Melnyk, RA
Partridge, AW
Deber, CM
机构
[1] Hosp Sick Children, Res Inst, Div Struct Biol & Biochem, Toronto, ON M5G 1X8, Canada
[2] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada
关键词
D O I
10.1021/bi010642e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biophysical study of the transmembrane (TM) domains of integral membrane proteins has traditionally been impeded by their hydrophobic nature. As a result, an understanding of the details of protein-protein interactions within membranes is often lacking. We have demonstrated previously that model TM segments with flanking cationic residues spontaneously fold into alpha -helices upon insertion into membrane-mimetic environments. Here, we extend these studies to investigate whether such constructs consisting of TM helices from biological systems retain their native secondary structures and oligomeric states. Single-spanning TM domains from the epidermal growth factor receptor (EGFR), glycophorin A (GPA), and the influenza A virus M2 ion channel (M2) were designed and synthesized with three to four lysine residues at both N- and C-termini. Each construct was shown to adopt an (x-helical conformation upon insertion into sodium dodecyl sulfate micelles. Furthermore, micelle-inserted TM segments associated on SDS-PAGE gels according to their respective native-like oligomeric states: EGFR was monomeric, GPA was dimeric, and M2 was tetrameric. This approach was then used to investigate whether one or both of the TM segments (Tar-1 and Tar-2) from the Escherichia coli aspartate receptor were responsible for its homodimeric nature. Our results showed that Tar-1 formed SDS-resistant homodimers, while Tar-2 was monomeric. Furthermore, no heterooligomerization between Tar-1 and Tar-2 was detected, implicating the Tar-1 helix as the oligomeric determinant for the Tar protein. The overall results indicate that this approach can be used to elucidate the details of TM domain folding for both single-spanning and multispanning membrane proteins.
引用
收藏
页码:11106 / 11113
页数:8
相关论文
共 47 条
[1]   Structural perspectives of phospholamban, a helical transmembrane pentamer [J].
Arkin, IT ;
Adams, PD ;
Brunger, AT ;
Smith, SO ;
Engelman, DM .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1997, 26 :157-179
[2]   STRUCTURAL ORGANIZATION OF THE PENTAMERIC TRANSMEMBRANE ALPHA-HELICES OF PHOSPHOLAMBAN, A CARDIAC ION-CHANNEL [J].
ARKIN, IT ;
ADAMS, PD ;
MACKENZIE, KR ;
LEMMON, MA ;
BRUNGER, AT ;
ENGELMAN, DM .
EMBO JOURNAL, 1994, 13 (20) :4757-4764
[3]  
BANDEKAR J, 1982, INT J PEPT PROT RES, V19, P187
[4]   The influenza virus M2 ion channel protein:: Probing the structure of the transmembrane domain in intact cells by using engineered disulfide cross-linking [J].
Bauer, CM ;
Pinto, LH ;
Cross, TA ;
Lamb, RA .
VIROLOGY, 1999, 254 (01) :196-209
[5]   Helix packing in membrane proteins [J].
Bowie, JU .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (05) :780-789
[6]  
Choma C, 2000, NAT STRUCT BIOL, V7, P161
[7]  
Chou P Y, 1978, Adv Enzymol Relat Areas Mol Biol, V47, P45
[8]   EMPIRICAL PREDICTIONS OF PROTEIN CONFORMATION [J].
CHOU, PY ;
FASMAN, GD .
ANNUAL REVIEW OF BIOCHEMISTRY, 1978, 47 :251-276
[9]   A simple restriction fragment length polymorphism-based strategy that can distinguish the internal genes of human H1N1, H3N2, and H5N1 influenza A viruses [J].
Cooper, LA ;
Subbarao, K .
JOURNAL OF CLINICAL MICROBIOLOGY, 2000, 38 (07) :2579-2583
[10]   ROLE OF TRANSMEMBRANE DOMAIN INTERACTIONS IN THE ASSEMBLY OF CLASS-II MHC MOLECULES [J].
COSSON, P ;
BONIFACINO, JS .
SCIENCE, 1992, 258 (5082) :659-662