On 0-1 polytopes with many facets

被引:26
作者
Bárány, I
Pór, A
机构
[1] Hungarian Acad Sci, Renyi Inst Math, H-1364 Budapest, Hungary
[2] UCL, Dept Math, London WC1E 6BT, England
[3] Eotvos Lorand Univ, Dept Geometry, H-1053 Budapest, Hungary
关键词
D O I
10.1006/aima.2001.1991
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There exist n-dimensional 0-1 polytopes with as many as (cn/logn)(n/4) facets. This is our main result. It answers a question of Komei Fukuda and Gunter M. Ziegler. (C) 2001 Academic Press.
引用
收藏
页码:209 / 228
页数:20
相关论文
共 16 条
[1]  
Applegate D.L., 1998, INT C MATH, VICM III, P645
[2]   COMPUTING THE VOLUME IS DIFFICULT [J].
BARANY, I ;
FUREDI, Z .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (04) :319-326
[3]   THE CARATHEODORY NUMBER FOR THE K-CORE [J].
BARANY, I ;
PERLES, M .
COMBINATORICA, 1990, 10 (02) :185-194
[4]  
Bonnesen T., 1934, THEORIE KONVEXEN KOR
[5]   STOCHASTICAL APPROXIMATION OF CONVEX-BODIES [J].
BUCHTA, C ;
MULLER, J ;
TICHY, RF .
MATHEMATISCHE ANNALEN, 1985, 271 (02) :225-235
[6]   GELFAND NUMBERS OF OPERATORS WITH VALUES IN A HILBERT-SPACE [J].
CARL, B ;
PAJOR, A .
INVENTIONES MATHEMATICAE, 1988, 94 (03) :479-504
[7]  
DEZA M, 1997, GEOMETRY CUTS METRIC, V15
[8]   VOLUMES SPANNED BY RANDOM POINTS IN THE HYPERCUBE [J].
DYER, ME ;
FUREDI, Z ;
MCDIARMID, C .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (01) :91-106
[9]  
Eckhoff J., 1993, HDB CONVEX GEOMETRY, P389, DOI DOI 10.1016/B978-0-444-89596-7.50017-1
[10]  
Feller W., 1991, An Introduction to Probability Theory and Its Applications, VII