Constitutive salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4

被引:107
作者
Jirage, D
Zhou, N
Cooper, B
Clarke, JD
Dong, XN
Glazebrook, J
机构
[1] Torrey Mesa Res Inst, San Diego, CA 92121 USA
[2] Univ Maryland, Inst Biotechnol, Ctr Agr Biotechnol, College Pk, MD 20742 USA
[3] Duke Univ, Dev Cell & Mol Biol Grp, Dept Biol, Durham, NC 27708 USA
关键词
cpr; pad4; dnd; camalexin; salicylic acid; pathogenesis related; defensin;
D O I
10.1046/j.1365-313X.2001.2641040.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salicylic acid (SA)-dependent signaling controls activation of a set of plant defense mechanisms that are important for resistance to a variety of microbial pathogens. Many Arabidopsis mutants that display altered SA-dependent signaling have been isolated. We used double mutant analysis to determine the relative positions of the pad4, cpr1, cpr5, cpr6, dnd1 and dnd2 mutations in the signal transduction network leading to SA-dependent activation of defense gene expression and disease resistance. The pad4 mutation causes failure of SA accumulation in response to infection by certain pathogens, while the other mutations cause constitutively high levels of SA, defense gene expression and resistance. The cpr7 pad4, cpr5 pad4, cpr6 pad4, dnd1 pad4 and dnd2 pad4 double mutants were constructed and assayed for stature, presence of spontaneous lesions, resistance to Pseudomonas syringae and Peronospora parasitica, SA levels, expression of PAD4 PR-I and PDF1.2 and accumulation of camalexin. We found that the effects of the cpr1 and cpr6 mutations on SA-dependent gene expression are completely dependent on PAD4 function. In contrast, SA accumulation in the lesion-mimic mutant cpr5 is partially PAD4-independent, while in dnd1 and dnd2 mutants it is completely PAD4-independent. A model describing a possible arrangement of activities in the signal transduction network is presented.
引用
收藏
页码:395 / 407
页数:13
相关论文
共 51 条
[1]   Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis [J].
Aarts, N ;
Metz, M ;
Holub, E ;
Staskawicz, BJ ;
Daniels, MJ ;
Parker, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10306-10311
[2]   A MUTATION IN ARABIDOPSIS THAT LEADS TO CONSTITUTIVE EXPRESSION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
BOWLING, SA ;
GUO, A ;
CAO, H ;
GORDON, AS ;
KLESSIG, DF ;
DONG, XI .
PLANT CELL, 1994, 6 (12) :1845-1857
[3]   The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance [J].
Bowling, SA ;
Clarke, JD ;
Liu, YD ;
Klessig, DF ;
Dong, XN .
PLANT CELL, 1997, 9 (09) :1573-1584
[4]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[5]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[6]   OpenMP: a parallel standard for the masses [J].
Clark, D .
IEEE CONCURRENCY, 1998, 6 (01) :10-12
[7]   Constitutive disease resistance requires EDS1 in the Arabidopsis mutants cpr1 and cpr6 and is partially EDS1-dependent in cpr5 [J].
Clarke, JD ;
Aarts, N ;
Feys, BJ ;
Dong, XN ;
Parker, JE .
PLANT JOURNAL, 2001, 26 (04) :409-420
[8]   Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis [J].
Clarke, JD ;
Volko, SM ;
Ledford, H ;
Ausubel, FM ;
Dong, XN .
PLANT CELL, 2000, 12 (11) :2175-2190
[9]   The Arabidopsis dnd1 "defense, no death" gene encodes a mutated cyclic nucleotide-gated ion channel [J].
Clough, SJ ;
Fengler, KA ;
Yu, IC ;
Lippok, B ;
Smith, RK ;
Bent, AF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :9323-9328
[10]   RNA surveillance - unforeseen consequences for gene expression, inherited genetic disorders and cancer [J].
Culbertson, MR .
TRENDS IN GENETICS, 1999, 15 (02) :74-80