K-means clustering algorithm using the entropy

被引:3
作者
Palubinskas, G [1 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt DLR EV, Deutsch Fernerkundungsdatenzentrum, D-82234 Wessling, Germany
来源
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IV | 1998年 / 3500卷
关键词
clustering K-means; ISODATA; entropy; Bayesian inference; magnetic resonance imaging; remote sensing;
D O I
10.1117/12.331894
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The problem of unsupervised clustering of data is formulated using a Bayesian inference. The entropy is considered to define a prior. In clustering problem we have to reduce the complexity of the grey level description. Therefore we minimise the entropy associated with the clustering histogram. This enables us to overcome the problem of defining a priori the number of clusters and an initialisation of their centers. Under the assumption of a normal distribution of data the proposed clustering method reduces to a deterministic algorithm (very fast) which appears to be an. extension of the standard k-means clustering algorithm. Our model depends on a parameter weighting the prior term and the goodness of fit term. This hyper-parameter allows us to define the coarseness of the clustering and is data independent. Heuristic argument is proposed to estimate this parameter. The new clustering approach was successfully tested on a database of 65 magnetic resonance images and remote sensing images.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 22 条
[1]  
Bezdek J. C., 1973, Journal of Cybernetics, V3, P58, DOI 10.1080/01969727308546047
[2]   OPTIMAL FUZZY PARTITIONS - HEURISTIC FOR ESTIMATING PARAMETERS IN A MIXTURE OF NORMAL DISTRIBUTIONS [J].
BEZDEK, JC ;
DUNN, JC .
IEEE TRANSACTIONS ON COMPUTERS, 1975, 24 (08) :835-838
[3]  
BOW ST, 1992, PATTERN RECOGNITION
[4]   MRI SEGMENTATION - METHODS AND APPLICATIONS [J].
CLARKE, LP ;
VELTHUIZEN, RP ;
CAMACHO, MA ;
HEINE, JJ ;
VAIDYANATHAN, M ;
HALL, LO ;
THATCHER, RW ;
SILBIGER, ML .
MAGNETIC RESONANCE IMAGING, 1995, 13 (03) :343-368
[5]   A COEFFICIENT OF AGREEMENT FOR NOMINAL SCALES [J].
COHEN, J .
EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1960, 20 (01) :37-46
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]  
DESCOMBES X, 1996, KULESATMI29603 LAB M
[8]  
DESCOMBES X, 1997, UNPUB IEEE T PATTERN
[9]  
Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
[10]  
Fukunaga K., 1990, INTRO STAT PATTERN R