Signaling factors in stem cell-mediated repair of infarcted myocardium

被引:203
作者
Vandervelde, S
van Luyn, MJA
Tio, RA
Harmsen, MC
机构
[1] Univ Groningen, Dept Pathol & Lab Med, Med Ctr, NL-9713 GZ Groningen, Netherlands
[2] Univ Groningen Hosp, Dept Cardiol, NL-9713 GZ Groningen, Netherlands
关键词
cardiac regeneration; stem cell; myocardial infarction; cytokine; growth factor; cell therapy; inflammation; bone marrow; angiogenesis; cardiogenesis; mobilization; incorporation; differentiation; signaling;
D O I
10.1016/j.yjmcc.2005.05.012
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Myocardial infarction leads to scar formation and subsequent reduced cardiac performance. The ultimate therapy after myocardial infarction would pursue stem cell-based regeneration. The aim of stem cell-mediated cardiac repair embodies restoration of cardiac function by regeneration of healthy myocardial tissue, which is accomplished by neo-angiogenesis and cardiogenesis. A major reservoir of adult autologous stem cells distal from the heart is the bone marrow. Adequate regulation of signaling between the bone marrow, the peripheral circulation and the infarcted myocardium, is important in orchestrating the process of mobilization, homing, incorporation, survival, proliferation and differentiation of stem cells, that leads to myocardial regeneration. In this review, we discuss key signaling factors, including cytokines, chemokines and growth factors, which are involved in orchestrating the stein cell driven repair process. We focus on signaling factors known for their mobilizing and chemotactic abilities (SDF-1, G-CSF, SCF, IL-8, VEGF), signaling factors that are expressed after myocardial infarction involved in the patho-physiological healing process (TNF-alpha, IL-8, IL-10, HIF-1 alpha, VEGF, G-CSF) and signaling factors that are involved in cardiogenesis and neo-angiogenesis (VEGF, EPO, TGF-beta, HGF, HIF-1 alpha, IL-8). The future therapeutic application and capacity of secreted factors to modulate tissue repair after myocardial infarction relies on the intrinsic potency of factors and on the optimal localization and timing of a combination of signaling factors to stimulate stem cells in their niche to regenerate the infarcted heart. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 149 条
[1]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[2]   MOLECULAR-CLONING OF MAST-CELL GROWTH-FACTOR, A HEMATOPOIETIN THAT IS ACTIVE IN BOTH MEMBRANE-BOUND AND SOLUBLE FORMS [J].
ANDERSON, DM ;
LYMAN, SD ;
BAIRD, A ;
WIGNALL, JM ;
EISENMAN, J ;
RAUCH, C ;
MARCH, CJ ;
BOSWELL, HS ;
GIMPEL, SD ;
COSMAN, D ;
WILLIAMS, DE .
CELL, 1990, 63 (01) :235-243
[3]   Isolation of putative progenitor endothelial cells for angiogenesis [J].
Asahara, T ;
Murohara, T ;
Sullivan, A ;
Silver, M ;
vanderZee, R ;
Li, T ;
Witzenbichler, B ;
Schatteman, G ;
Isner, JM .
SCIENCE, 1997, 275 (5302) :964-967
[4]   VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells [J].
Asahara, T ;
Takahashi, T ;
Masuda, H ;
Kalka, C ;
Chen, DH ;
Iwaguro, H ;
Inai, Y ;
Silver, M ;
Isner, JM .
EMBO JOURNAL, 1999, 18 (14) :3964-3972
[5]   Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy [J].
Askari, AT ;
Unzek, S ;
Popovic, ZB ;
Goldman, CK ;
Forudi, F ;
Kiedrowski, M ;
Rovner, A ;
Ellis, SG ;
Thomas, JD ;
DiCorleto, PE ;
Topol, EJ ;
Penn, MS .
LANCET, 2003, 362 (9385) :697-703
[6]   UP-REGULATION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR EXPRESSION INDUCED BY MYOCARDIAL-ISCHEMIA - IMPLICATIONS FOR CORONARY ANGIOGENESIS [J].
BANAI, S ;
SHWEIKI, D ;
PINSON, A ;
CHANDRA, M ;
LAZAROVICI, G ;
KESHET, E .
CARDIOVASCULAR RESEARCH, 1994, 28 (08) :1176-1179
[7]   Evidence that human cardiac myocytes divide after myocardial infarction (Publication with Expression of Concern. See vol. 379, pg. 1870, 2018) [J].
Beltrami, AP ;
Urbanek, K ;
Kajstura, J ;
Yan, SM ;
Finato, N ;
Bussani, R ;
Nadal-Ginard, B ;
Silvestri, F ;
Leri, A ;
Beltrami, CA ;
Anversa, P .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (23) :1750-1757
[8]   Adult cardiac stem cells are multipotent and support myocardial regeneration [J].
Beltrami, AP ;
Barlucchi, L ;
Torella, D ;
Baker, M ;
Limana, F ;
Chimenti, S ;
Kasahara, H ;
Rota, M ;
Musso, E ;
Urbanek, K ;
Leri, A ;
Kajstura, J ;
Nadal-Ginard, B ;
Anversa, P .
CELL, 2003, 114 (06) :763-776
[9]   New insights into the pathological role of TNF-α in early cardiac dysfunction and subsequent heart failure after infarction in rats [J].
Berthonneche, C ;
Sulpice, T ;
Boucher, F ;
Gouraud, L ;
de Leiris, J ;
O'Connor, SE ;
Herbert, JM ;
Janiak, P .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2004, 287 (01) :H340-H350
[10]   Complement C5a, TGF-beta 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first one to five hours after reperfusion [J].
Birdsall, HH ;
Green, DM ;
Trial, J ;
Youker, KA ;
Burns, AR ;
MacKay, CR ;
LaRosa, GJ ;
Hawkins, HK ;
Smith, CW ;
Michael, LH ;
Entman, ML ;
Rossen, RD .
CIRCULATION, 1997, 95 (03) :684-692