The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids

被引:591
作者
Sastry, S [1 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, Bangalore 560064, Karnataka, India
关键词
D O I
10.1038/35051524
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glass is a microscopically disordered, solid form of matter that results when a fluid is cooled or compressed in such a manner that it does not crystallize. Almost all types of materials are capable of glass formation, including polymers, metal alloys and molten salts. Given such diversity, general principles by which different glass-forming materials can be systematically classified are invaluable. One such principle is the classification of glass-formers according to their fragility(1). Fragility measures the rapidity with which a liquid's properties (such as viscosity) change as the glassy state is approached. Although the relationship between the fragility, configurational entropy and features of the energy landscape (the complicated dependence of energy on configuration) of a glass-former have been analysed previously(2), a detailed understanding of the origins of fragility is lacking. Here I use simulations to analyse the relationship between fragility and quantitative measures of the energy landscape for a model liquid whose fragility depends on its bulk density. The results reveal that fragility depends on changes in the vibrational properties of individual energy minima in addition to their total number and spread in energy. A thermodynamic expression for fragility is derived, which is in quantitative agreement with kinetic fragilities obtained from the liquid's diffusivity.
引用
收藏
页码:164 / 167
页数:5
相关论文
共 30 条
[1]   ON TEMPERATURE DEPENDENCE OF COOPERATIVE RELAXATION PROPERTIES IN GLASS-FORMING LIQUIDS [J].
ADAM, G ;
GIBBS, JH .
JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (01) :139-&
[2]   CONFIGURATIONAL EXCITATIONS IN CONDENSED MATTER, AND BOND LATTICE MODEL FOR LIQUID-GLASS TRANSITION [J].
ANGELL, CA ;
RAO, KJ .
JOURNAL OF CHEMICAL PHYSICS, 1972, 57 (01) :470-&
[3]   Entropy and fragility in supercooling liquids [J].
Angell, CA .
JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1997, 102 (02) :171-185
[4]   RELAXATION IN LIQUIDS, POLYMERS AND PLASTIC CRYSTALS - STRONG FRAGILE PATTERNS AND PROBLEMS [J].
ANGELL, CA .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1991, 131 :13-31
[5]   Ten questions on glassformers, and a real space 'excitations' model with some answers on fragility and phase transitions [J].
Angell, CA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (29) :6463-6475
[6]   Potential energy landscape of a model glass former:: Thermodynamics, anharmonicities, and finite size effects [J].
Büchner, S ;
Heuer, A .
PHYSICAL REVIEW E, 1999, 60 (06) :6507-6518
[7]   Lennard-Jones binary mixture: A thermodynamical approach to glass transition [J].
Coluzzi, B ;
Parisi, G ;
Verrocchio, P .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (06) :2933-2944
[8]   VISCOUS-LIQUIDS AND GLASS-TRANSITION .5. SOURCES OF EXCESS SPECIFIC-HEAT OF LIQUID [J].
GOLDSTEIN, M .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (11) :4767-4774
[9]   Fragility in liquids and polymers: New, simple quantifications and interpretations [J].
Green, JL ;
Ito, K ;
Xu, K ;
Angell, CA .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (20) :3991-3996
[10]   Why is the density of inherent structures of a Lennard-Jones-type system Gaussian? [J].
Heuer, A ;
Büchner, S .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (29) :6535-6541