Evolution, rationality and equilibrium in games

被引:28
作者
Weibull, JW
机构
[1] Stockholm Sch Econ, Dept Econ, S-11383 Stockholm, Sweden
[2] Res Inst Ind Econ, S-14485 Stockholm, Sweden
关键词
game theory; evolution; rationality;
D O I
10.1016/S0014-2921(98)00012-9
中图分类号
F [经济];
学科分类号
02 ;
摘要
Evolutionary game theory studies the robustness of strategy profiles and sets of strategy profiles with respect to evolutionary forces in games played repeatedly in large populations of boundedly rational agents. The approach is macro-oriented in the sense of focusing on the strategy distribution in the interacting population(s). Some of the main features of this approach are here outlined, and connections with learning models and standard notions of game-theoretic rationality and equilibrium are discussed. Some desiderata and results for robust long-run predictions are considered. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:641 / 649
页数:9
相关论文
共 23 条
[1]   DOMINATION OR EQUILIBRIUM [J].
AKIN, E .
MATHEMATICAL BIOSCIENCES, 1980, 50 (3-4) :239-250
[2]   EPISTEMIC CONDITIONS FOR NASH EQUILIBRIUM [J].
AUMANN, R ;
BRANDENBURGER, A .
ECONOMETRICA, 1995, 63 (05) :1161-1180
[3]   STRATEGY SUBSETS CLOSED UNDER RATIONAL BEHAVIOR [J].
BASU, K ;
WEIBULL, JW .
ECONOMICS LETTERS, 1991, 36 (02) :141-146
[4]  
Bjornerstedt J., 1996, RATIONAL FDN EC BEHA
[5]  
Bomze I. M., 1986, International Journal of Game Theory, V15, P31, DOI 10.1007/BF01769275
[6]  
BORGERS T, 1997, IN PRESS J EC THEORY
[7]   A MATHEMATICAL MODEL FOR SIMPLE LEARNING [J].
BUSH, RR ;
MOSTELLER, F .
PSYCHOLOGICAL REVIEW, 1951, 58 (05) :313-323
[8]  
CABRALES A, 1996, UNPUB STOCHASTIC REP
[9]   STOCHASTIC LEARNING MODEL OF ECONOMIC BEHAVIOR [J].
CROSS, JG .
QUARTERLY JOURNAL OF ECONOMICS, 1973, 87 (02) :239-266
[10]   LEARNING TO BE IMPERFECT - THE ULTIMATUM GAME [J].
GALE, J ;
BINMORE, KG ;
SAMUELSON, L .
GAMES AND ECONOMIC BEHAVIOR, 1995, 8 (01) :56-90