Molecular Mimicry and Ligand Recognition in Binding and Catalysis by the Histone Demethylase LSD1-CoREST Complex

被引:88
作者
Baron, Riccardo [1 ,2 ]
Binda, Claudia [3 ]
Tortorici, Marcello [3 ]
McCammon, J. Andrew [1 ,2 ]
Mattevi, Andrea [3 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pharmacol, Howard Hughes Med Inst, La Jolla, CA 92093 USA
[3] Univ Pavia, Dept Genet & Microbiol, I-27100 Pavia, Italy
基金
美国国家科学基金会;
关键词
OXYGEN ACTIVATION SITE; STRUCTURAL BASIS; ACTIVE-SITE; DYNAMICS; OXIDASE; LSD1; INTEGRATION; SIMULATION; EXPRESSION; REACTIVITY;
D O I
10.1016/j.str.2011.01.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Histone demethylases LSD1 and LSD2 (KDM1A/B) catalyze the oxidative demethylation of Lys4 of histone H3. We used molecular dynamics simulations to probe the diffusion of the oxygen substrate. Oxygen can reach the catalytic center independently from the presence of a bound histone peptide, implying that LSD1 can complete subsequent demethylation cycles without detaching from the nucleosomal particle. The simulations highlight the role of a strictly conserved active-site Lys residue providing general insight into the enzymatic mechanism of oxygen-reacting flavoenzymes. The crystal structure of LSD1-CoREST bound to a peptide of the transcription factor SNAIL1 unravels a fascinating example of molecular mimicry. The SNAIL1 N-terminal residues bind to the enzyme active-site cleft, effectively mimicking the H3 tail. This finding predicts that other members of the SNAIL/Scratch transcription factor family might associate to LSD1/2. The combination of selective histone-modifying activity with the distinct recognition mechanisms underlies the biological complexity of LSD1/2.
引用
收藏
页码:212 / 220
页数:9
相关论文
共 54 条
[1]   LSD1-mediated demethylation of histone H3 lysine 4 triggers Myc-induced transcription [J].
Amente, S. ;
Bertoni, A. ;
Morano, A. ;
Lania, L. ;
Avvedimento, E. V. ;
Majello, B. .
ONCOGENE, 2010, 29 (25) :3691-3702
[2]  
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021, DOI 10.1021/j100384a009
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models [J].
Baron, Riccardo ;
Trzesniak, Daniel ;
de Vries, Alex H. ;
Elsener, Andreas ;
Marrink, Siewert J. ;
van Gunsteren, Wilfred F. .
CHEMPHYSCHEM, 2007, 8 (03) :452-461
[5]   The oxygen-binding vs. oxygen-consuming paradigm in biocatalysis: structural biology and biomolecular simulation [J].
Baron, Riccardo ;
McCammon, J. Andrew ;
Mattevi, Andrea .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2009, 19 (06) :672-679
[6]   Multiple pathways guide oxygen diffusion into flavoenzyme active sites [J].
Baron, Riccardo ;
Riley, Conor ;
Chenprakhon, Pirom ;
Thotsaporn, Kittisak ;
Winter, Remko T. ;
Alfieri, Andrea ;
Forneris, Federico ;
van Berkel, Willem J. H. ;
Chaiyen, Pimchai ;
Fraaije, Marco W. ;
Mattevi, Andrea ;
McCammon, J. Andrew .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (26) :10603-10608
[7]   Evolutionary history of the Snail/Scratch superfamily [J].
Barrallo-Gimeno, Alejandro ;
Angela Nieto, M. .
TRENDS IN GENETICS, 2009, 25 (06) :248-252
[8]  
Berendsen HJ, 1981, Interaction models for water in relation to protein hydration, DOI DOI 10.1007/978-94-015-7658-1_21
[9]   Structure-function relationships in flavoenzyme-dependent amine oxidations. A comparison of polyamine oxidase and monoamine oxidase. [J].
Binda, C ;
Mattevi, A ;
Edmondson, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) :23973-23976
[10]   A 30 Å long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase [J].
Binda, C ;
Coda, A ;
Angelini, R ;
Federico, R ;
Ascenzi, P ;
Mattevi, A .
STRUCTURE, 1999, 7 (03) :265-276