Receptor-specific requirements for anthrax toxin delivery into cells

被引:107
作者
Rainey, GJA
Wigelsworth, DJ
Ryan, PL
Scobie, HM
Collier, RJ
Young, JAT
机构
[1] Salk Inst Biol Studies, Infect Dis Lab, La Jolla, CA 92037 USA
[2] Harvard Univ, Sch Med, Dept Microbiol, Boston, MA 02115 USA
[3] Univ Calif San Diego, Dept Biol, Grad Program, La Jolla, CA 92093 USA
[4] Univ Wisconsin, Grad Program Cell & Mol Biol, Madison, WI 53726 USA
关键词
capillary morphogenesis protein 2; tumor endothelial marker 8; toxin entry;
D O I
10.1073/pnas.0505865102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The three proteins that constitute anthrax toxin self -assemble into toxic complexes after one of these proteins, protective antigen (PA), binds to tumor endothelial marker 8 (TEM8) or capillary morphogenesis protein 2 (CMG2) cellular receptors. The toxin receptor complexes are internalized, and acidic endosomal pH triggers pore formation by PA and translocation of the catalytic subunits into the cytosol. In this study we show that the pH threshold for conversion of the PA prepore to the pore and for translocation differs by approximately a pH unit, depending on whether the TEM8 or CMG2 receptor is used. For TEM8-associated toxin, these events can occur at close to neutral pH values, and they show relatively low sensitivity to ammonium chloride treatment in cells. In contrast, with CMG2-associated toxin, these events require more acidic conditions and are highly sensitive to ammonium chloride. We show, furthermore, that PA dissociates from TEM8 and CMG2 upon pore formation. Our results are consistent with a model in which translocation depends on pore formation and pore formation, in turn, depends on release of PA from its receptor. We propose that because PA binds to CMG2 with much higher affinity than it does to TEM8, a lower pH is needed to attenuate CMG2 binding to allow pore formation. Our results suggest that toxin can form pores at different points in the endocytic pathway, depending on which receptor is used for entry.
引用
收藏
页码:13278 / 13283
页数:6
相关论文
共 47 条
[1]   Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway [J].
Abrami, L ;
Lindsay, M ;
Parton, RG ;
Leppla, SH ;
van der Goot, FG .
JOURNAL OF CELL BIOLOGY, 2004, 166 (05) :645-651
[2]   Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process [J].
Abrami, L ;
Liu, SH ;
Cosson, P ;
Leppla, SH ;
van der Goot, FG .
JOURNAL OF CELL BIOLOGY, 2003, 160 (03) :321-328
[3]   Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin [J].
Agrawal, A ;
Lingappa, J ;
Leppla, SH ;
Agrawal, S ;
Jabbar, A ;
Quinn, C ;
Pulendran, B .
NATURE, 2003, 424 (6946) :329-334
[4]   Anthrax toxin receptor 2 mediates Bacillus anthracis killing of macrophages following spore challenge [J].
Banks, DJ ;
Barnajian, M ;
Maldonado-Arocho, FJ ;
Sanchez, AM ;
Bradley, KA .
CELLULAR MICROBIOLOGY, 2005, 7 (08) :1173-1185
[5]   Identification of residues lining the anthrax protective antigen channel [J].
Benson, EL ;
Huynh, PD ;
Finkelstein, A ;
Collier, RJ .
BIOCHEMISTRY, 1998, 37 (11) :3941-3948
[6]   ANTHRAX TOXIN - CHANNEL-FORMING ACTIVITY OF PROTECTIVE ANTIGEN IN PLANAR PHOSPHOLIPID-BILAYERS [J].
BLAUSTEIN, RO ;
KOEHLER, TM ;
COLLIER, RJ ;
FINKELSTEIN, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (07) :2209-2213
[7]   ATR/TEM8 is highly expressed in epithelial cells lining Bacillus anthracis' three sites of entry:: implications for the pathogenesis of anthrax infection [J].
Bonuccelli, G ;
Sotgia, F ;
Frank, PG ;
Williams, TM ;
de Almeida, CJ ;
Tanowitz, HB ;
Scherer, PE ;
Hotchkiss, KA ;
Terman, BI ;
Rollman, B ;
Alileche, A ;
Brojatsch, J ;
Lisanti, MP .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2005, 288 (06) :C1402-C1410
[8]   Identification of the cellular receptor for anthrax toxin [J].
Bradley, KA ;
Mogridge, J ;
Mourez, M ;
Collier, RJ ;
Young, JAT .
NATURE, 2001, 414 (6860) :225-229
[9]   Binding of anthrax toxin to its receptor is similar to α integrin-ligand interactions [J].
Bradley, KA ;
Mogridge, J ;
Rainey, GJA ;
Batty, S ;
Young, JAT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (49) :49342-49347
[10]   Dendritic cells endocytose Bacillus anthracis spores:: Implications for anthrax pathogenesis [J].
Brittingham, KC ;
Ruthel, G ;
Panchal, RG ;
Fuller, CL ;
Ribot, WJ ;
Hoover, TA ;
Young, HA ;
Anderson, AO ;
Bavari, S .
JOURNAL OF IMMUNOLOGY, 2005, 174 (09) :5545-5552