Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult

被引:463
作者
Kraft, AD
Johnson, DA
Johnson, JA
机构
[1] Univ Wisconsin, Sch Pharm, Madison, WI 53705 USA
[2] Univ Wisconsin, Waisman Ctr, Madison, WI 53705 USA
[3] Univ Wisconsin, Mol & Environm Toxicol Ctr, Madison, WI 53705 USA
关键词
antioxidant response element; oxidative stress; neuroprotection; Nrf2; microarray; sulforaphane; glia-neuron interaction; cell sorting;
D O I
10.1523/JNEUROSCI.3817-03.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Binding of the transcription factor nuclear factor E2-related factor 2 (Nrf2) to the antioxidant response element (ARE) in neural cells results in the induction of a battery of genes that can coordinate a protective response against a variety of oxidative stressors. In this study, tert-butylhydroquinone (tBHQ) and sulforaphane were used as activators of this pathway. Consistent with previous studies, treatment of primary cortical cultures from ARE reporter mice revealed selective promoter activity in astrocytes. This activation protected neurons from hydrogen peroxide and nonexcitotoxic glutamate toxicity. tBHQ treatment of cultures from Nrf2 knock-out animals resulted in neither ARE activation nor neuroprotection. By reintroducing Nrf2 via infection with a replication-deficient adenovirus (ad), both the genetic response and neuroprotection were rescued. Conversely, infection with adenovirus encoding dominant-negative (DN) Nrf2 (ad-DN-Nrf2) or pretreatment with the selective phosphatidylinositol-3 kinase inhibitor LY294002 inhibited the tBHQ-mediated promoter response and corresponding neuroprotection. Interestingly, the adenoviral infection showed a high selectivity for astrocytes over neurons. In an attempt to reveal some of the cell type-specific changes resulting from ARE activation, cultures were infected with adenovirus encoding green fluorescent protein (GFP) (ad-GFP) or ad-DN-Nrf2 (containing GFP) before tBHQ treatment. A glia-enriched population of GFP-infected cells was then isolated from a population of uninfected neurons using cell-sorting technology. Microarray analysis was used to evaluate potential glial versus neuron-specific contributions to the neuroprotective effects of ARE activation and Nrf2 dependence. Strikingly, the change in neuronal gene expression after tBHQ treatment was dependent on Nrf2 activity in the astrocytes. This suggests that Nrf2-dependent genetic changes alter neuron-glia interactions resulting in neuroprotection.
引用
收藏
页码:1101 / 1112
页数:12
相关论文
共 63 条
[1]  
Ahlgren-Beckendorf JA, 1999, GLIA, V25, P131, DOI 10.1002/(SICI)1098-1136(19990115)25:2<131::AID-GLIA4>3.0.CO
[2]  
2-6
[3]   Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene [J].
Alam, J ;
Stewart, D ;
Touchard, C ;
Boinapally, S ;
Choi, AMK ;
Cook, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26071-26078
[4]  
Aschner M, 2000, NEUROTOXICOLOGY, V21, P1101
[5]   Neurobiology - Cholesterol - Making or breaking the synapse [J].
Barres, BA ;
Smith, SJ .
SCIENCE, 2001, 294 (5545) :1296-1297
[6]   Evidence that β3 integrin-induced Rac activation involves the calpain-dependent formation of integrin clusters that are distinct from the focal complexes and focal adhesions that form as Rac and RhoA become active [J].
Bialkowska, K ;
Kulkarni, S ;
Du, XP ;
Goll, DE ;
Saido, TC ;
Fox, JEB .
JOURNAL OF CELL BIOLOGY, 2000, 151 (03) :685-695
[7]   NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development [J].
Chan, KM ;
Lu, RH ;
Chang, JC ;
Kan, YW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13943-13948
[8]   Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice [J].
Chanas, SA ;
Jiang, Q ;
McMahon, M ;
McWalter, GK ;
McLellan, LI ;
Elcombe, CR ;
Henderson, CJ ;
Wolf, CR ;
Moffat, GJ ;
Itoh, K ;
Yamamoto, M ;
Hayes, JD .
BIOCHEMICAL JOURNAL, 2002, 365 (02) :405-416
[9]   OXIDATIVE STRESS, GLUTAMATE, AND NEURODEGENERATIVE DISORDERS [J].
COYLE, JT ;
PUTTFARCKEN, P .
SCIENCE, 1993, 262 (5134) :689-695
[10]   Glutamate uptake [J].
Danbolt, NC .
PROGRESS IN NEUROBIOLOGY, 2001, 65 (01) :1-105