Dual-regulated expression of C/EBP-α and BMP-2 enables differential differentiation of C2C12 cells into adipocytes and osteoblasts -: art. no. e1

被引:54
作者
Fux, C [1 ]
Mitta, B [1 ]
Kramer, BP [1 ]
Fussenegger, M [1 ]
机构
[1] ETH Honggerberg, Swiss Fed Inst Technol, Inst Biotechnol, CH-8093 Zurich, Switzerland
关键词
D O I
10.1093/nar/gnh001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CCAAT/enhancer-binding proteins (C/EBPs) as well as bone morphogenic proteins (BMPs) play essential roles in mammalian cell differentiation in shaping adipogenic and osteoblastic lineages in particular. Recent evidence suggested that adipocytes and osteoblasts share a common mesenchymal precursor cell phenotype. Yet, the molecular details underlying the decision of adipocyte versus osteoblast differentiation as well as the involvement of C/EBPs and BMPs remains elusive. We have engineered C2C12 cells for dual-regulated expression of human C/EBP-alpha and BMP-2 to enable independent transcription control of both differentiation factors using clinically licensed antibiotics of the streptogramin (pristinamycin) and tetracycline (tetracycline) classes. Differential as well as coordinated expression of C/EBP-alpha and BMP-2 revealed that (i) C/EBP-alpha may differentiate C2C12 myoblasts into adipocytes as well as osteoblasts, (ii) BMP-2 prevents myotube differentiation, (iii) is incompetent in differentiating C2C12 into osteoblasts and (iv) even decreases C/EBP-alpha's osteoblast-specific differentiation potential but (v) cooperates with C/EBP-alpha on adipocyte differentiation, (vi) osteoblast formation occurs at low C/EBP-alpha levels while adipocyte-specific differentiation requires maximum C/EBP-alpha expression and that (vii) BMP-2 may bias the C/EBP-alpha-mediated adipocyte versus osteoblast differentiation switch towards fat cell formation. Dual-regulated expression technology enabled precise insight into combinatorial effects of two key differentiation factors involved in adipocyte/osteoblast lineage control which could be implemented in rational reprogramming of multipotent cells into desired cell phenotypes tailored for gene therapy and tissue engineering.
引用
收藏
页数:9
相关论文
共 50 条
[1]   COGNATE DNA-BINDING SPECIFICITY RETAINED AFTER LEUCINE ZIPPER EXCHANGE BETWEEN GCN4 AND C/EBP [J].
AGRE, P ;
JOHNSON, PF ;
MCKNIGHT, SL .
SCIENCE, 1989, 246 (4932) :922-926
[2]   EXPRESSION OF HUMAN BONE MORPHOGENETIC PROTEINS-2 OR PROTEINS-4 IN MURINE MESENCHYMAL PROGENITOR C3H10T1/2 CELLS INDUCES DIFFERENTIATION INTO DISTINCT MESENCHYMAL CELL LINEAGES [J].
AHRENS, M ;
ANKENBAUER, T ;
SCHRODER, D ;
HOLLNAGEL, A ;
MAYER, H ;
GROSS, G .
DNA AND CELL BIOLOGY, 1993, 12 (10) :871-880
[3]   HUMAN OSTEOGENIC PROTEIN-1 INDUCES BOTH CHONDROBLASTIC AND OSTEOBLASTIC DIFFERENTIATION OF OSTEOPROGENITOR CELLS DERIVED FROM NEWBORN RAT CALVARIA [J].
ASAHINA, I ;
SAMPATH, TK ;
NISHIMURA, I ;
HAUSCHKA, PV .
JOURNAL OF CELL BIOLOGY, 1993, 123 (04) :921-933
[4]  
AUBIN JE, 1995, BONE, V17, P77
[5]   Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages [J].
Chen, D ;
Ji, X ;
Harris, MA ;
Feng, JQ ;
Karsenty, G ;
Celeste, AJ ;
Rosen, V ;
Mundy, GR ;
Harris, SE .
JOURNAL OF CELL BIOLOGY, 1998, 142 (01) :295-305
[6]   The role of C/EBP genes in adipocyte differentiation [J].
Darlington, GJ ;
Ross, SE ;
MacDougald, OA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (46) :30057-30060
[7]   ECTOPIC EXPRESSION OF THE CCAAT ENHANCER-BINDING PROTEIN-ALPHA PROMOTES THE ADIPOGENIC PROGRAM IN A VARIETY OF MOUSE FIBROBLASTIC CELLS [J].
FREYTAG, SO ;
PAIELLI, DL ;
GILBERT, JD .
GENES & DEVELOPMENT, 1994, 8 (14) :1654-1663
[8]   BONE-MARROW OSTEOGENIC STEM-CELLS - INVITRO CULTIVATION AND TRANSPLANTATION IN DIFFUSION-CHAMBERS [J].
FRIEDENSTEIN, AJ ;
CHAILAKHYAN, RK ;
GERASIMOV, UV .
CELL AND TISSUE KINETICS, 1987, 20 (03) :263-272
[9]   Streptogramin-based gene regulation systems for mammalian cells [J].
Fussenegger, M ;
Morris, RP ;
Fux, C ;
Rimann, M ;
von Stockar, B ;
Thompson, CJ ;
Bailey, JE .
NATURE BIOTECHNOLOGY, 2000, 18 (11) :1203-1208
[10]   A mathematical model of caspase function in apoptosis [J].
Fussenegger, M ;
Bailey, JE ;
Varner, J .
NATURE BIOTECHNOLOGY, 2000, 18 (07) :768-774