Self-whitening algorithms for adaptive equalization and deconvolution

被引:28
作者
Douglas, SC [1 ]
Cichocki, A
Amari, S
机构
[1] So Methodist Univ, Sch Engn & Appl Sci, Dept Elect Engn, Dallas, TX 75275 USA
[2] RIKEN, Brain Sci Inst, Lab Open Informat Syst, Wako, Saitama 35101, Japan
[3] RIKEN, Brain Sci Inst, Lab Informat Informat Synth, Wako, Saitama 35101, Japan
关键词
D O I
10.1109/78.752617
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In equalization and deconvolution tasks, the correlated nature of the input signal slows the convergence speeds of stochastic gradient adaptive filters, Prewhitening techniques have been proposed to improve convergence performance, but the additional coefficient memory and updates for the prewhitening filter can be prohibitive in some applications. In this correspondence, we present two simple algorithms that employ the equalizer as a prewhitening filter within the gradient updates. These self-whitening algorithms provide quasi-Newton convergence locally about the optimum coefficient solution for deconvolution and equalization tasks. Multichannel extensions of the techniques are also described.
引用
收藏
页码:1161 / 1165
页数:5
相关论文
共 15 条
[1]  
Amari S., 1996, ADV NEURAL INFORMATI, V8, P752
[2]  
AMARI S, 1997, P IEEE WORKSH SIGN P, P101
[3]   Fast-convergence filtered regressor algorithms for blind equalisation [J].
Douglas, SC ;
Cichocki, A ;
Amari, S .
ELECTRONICS LETTERS, 1996, 32 (23) :2114-2115
[4]  
DOUGLAS SC, 1999, 99001 SO METH U DEP
[5]  
GAY SL, 1995, INT C AC SPEECH SIGN, V5, P3023
[6]  
HAYKIN S, 1994, BLIND DECONVOLUTION
[7]  
Kuo Sen M., 1996, ACTIVE NOISE CONTROL
[8]  
Ljung L., 1983, THEORY PRACTICE RECU
[9]  
LONG G, 1992, IEEE T SIGNAL PROCES, V40, P230, DOI 10.1109/78.157202
[10]   LMS COUPLED ADAPTIVE PREDICTION AND SYSTEM-IDENTIFICATION - A STATISTICAL-MODEL AND TRANSIENT MEAN ANALYSIS [J].
MBOUP, M ;
BONNET, M ;
BERSHAD, N .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (10) :2607-2615