A family of putative Kir potassium channels in prokaryotes

被引:42
作者
Durell, Stewart R. [1 ]
Guy, H. Robert [1 ]
机构
[1] NCI, Mol Struct Sect, Lab Expt & Computat Biol, NIH, Bethesda, MD 20892 USA
关键词
Transmembrane Segment; Channel Family; Burkholderia Pseudomallei; Genetic Computer Group; Intermediate Nature;
D O I
10.1186/1471-2148-1-14
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Prior to this report, members of the inward rectifier family, or Kir, have been found only in eukaryotes. Like most K+ channels, the pore-forming part of the protein is formed by four identical, or closely related, subunits. Each subunit contains a transmembrane M1-P-M2 motif that is followed by a relatively large C-terminus region unique to Kir's. Results: In searching unfinished microbial genomes for K+ channels, we identified five sequences in the prokaryote Burkholderia pseudomallei, Burkholderia cepacia, Burkholderia fungorum LB400, Magentospirillum magnetotacticum, and Nostoc Punctiforme genomes that code for proteins whose closest relatives in current sequence databases are eukaryote Kir's. The sequence similarity includes the C-terminus portion of Kir's, for which there are no other close homologs in current prokaryote sequences. Sequences of the pore-forming P and M2 segments of these proteins, which we call KirBac, is intermediate between those of eukaryotic Kir's and several other K+ channel families. Conclusions: Although KirBac's are more closely related to Kir's than to other families of K+ channels, the intermediate nature of their pore-forming P and M2 segments suggests that they resemble an ancestral precursor to the eukaryotic Kir's. The similarity of KirBac to the bacterial KcsA channel, whose transmembrane structure has been solved, helps align Kir's with KcsA. KirBac's may assist in solving the three-dimensional structure of a member of the Kir family since bacterial membrane proteins are more easily expressed in the quantities necessary for crystallography.
引用
收藏
页数:9
相关论文
共 26 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998 [J].
Bairoch, A ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 1998, 26 (01) :38-42
[3]   Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel [J].
Capener, CE ;
Shrivastava, IH ;
Ranatunga, KM ;
Forrest, LR ;
Smith, GR ;
Sansom, MSP .
BIOPHYSICAL JOURNAL, 2000, 78 (06) :2929-2942
[4]   Functional characterization of a potassium-selective prokaryotic glutamate receptor [J].
Chen, GQ ;
Cui, CH ;
Mayer, ML ;
Gouaux, E .
NATURE, 1999, 402 (6763) :817-821
[5]  
CHOE S, P NATL ACAD SCI US, V92, P12046
[6]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[7]   Evolutionary relationship between K+ channels and symporters [J].
Durell, SR ;
Hao, YL ;
Nakamura, T ;
Bakker, EP ;
Guy, HR .
BIOPHYSICAL JOURNAL, 1999, 77 (02) :775-788
[8]   A putative prokaryote voltage-gated Ca2+ channel with only one 6TM motif per subunit [J].
Durell, SR ;
Guy, HR .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 281 (03) :741-746
[9]   Internal packing of helical membrane proteins [J].
Eilers, M ;
Shekar, SC ;
Shieh, T ;
Smith, SO ;
Fleming, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5796-5801
[10]  
*GCG, WISC PACK VERS 10 2