Molecular basis of ion selectivity, block, and rectification of the inward rectifier Kir3.1/Kir3.4 K+ channel

被引:59
作者
Dibb, KM
Rose, T
Makary, SY
Claydon, TW
Enkvetchakul, D
Leach, R
Nichols, CG
Boyett, MR [1 ]
机构
[1] Univ Leeds, Sch Biomed Sci, Leeds LS2 9JT, W Yorkshire, England
[2] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Biochem, St Louis, MO 63110 USA
关键词
D O I
10.1074/jbc.M307723200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The glycine-tyrosine-glycine (GYG) sequence in the p-loop of K+ channel subunits lines a narrow pore through which K+ ions pass in single file intercalated by water molecules. Mutation of the motif can give rise to nonselective channels, but it is clear that other structural features are also required for selectivity because, for instance, a recently identified class of cyclic nucleotide-gated pacemaker channels has the GYG motif but are poorly K+ selective. We show that mutation of charged glutamate and arginine residues behind the selectivity filter in the Kir3.1/Kir3.4K(+) channel reduces or abolishes K+ selectivity, comparable with previously reported effects in the Kir2.1 K+ channel. It has been suggested that a salt bridge exists between the glutamate-arginine residue pair. Molecular modeling indicates that the salt bridge does exist, and that it acts as a "bowstring" to maintain the rigid bow-like structure of the selectivity filter and restrict selectivity to K+. The modeling shows that relaxation of the bowstring by mutation of the residue pair leads to enhanced flexibility of the p-loop, allowing permeation of other cations, including polyamines. In experiments, mutation of the residue pair can also abolish polyamine-induced inward rectification. The latter effect occurs because polyamines now permeate rather than block the channel, to the remarkable extent that large polyamine currents can be measured.
引用
收藏
页码:49537 / 49548
页数:12
相关论文
共 35 条
[1]   GAP-JUNCTIONS FORMED BY CONNEXIN-26 AND CONNEXIN-32 ALONE AND IN COMBINATION ARE DIFFERENTLY AFFECTED BY APPLIED VOLTAGE [J].
BARRIO, LC ;
SUCHYNA, T ;
BARGIELLO, T ;
XU, LX ;
ROGINSKI, RS ;
BENNETT, MVL ;
NICHOLSON, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (19) :8410-8414
[2]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[3]   The ionization state and the conformation of Glu-71 in the KcsA K+ channel [J].
Bernèche, S ;
Roux, B .
BIOPHYSICAL JOURNAL, 2002, 82 (02) :772-780
[4]   Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1 [J].
Cho, HC ;
Tsushima, RG ;
Nguyen, TTT ;
Guy, HR ;
Backx, PH .
BIOCHEMISTRY, 2000, 39 (16) :4649-4657
[5]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[6]   VERIFY3D: Assessment of protein models with three-dimensional profiles [J].
Eisenberg, D ;
Luthy, R ;
Bowie, JU .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :396-404
[7]  
ENKVETCHAKUL D, 2003, IN PRESS J PHYSL
[8]   Mechanism of IRK1 channel block by intracellular polyamines [J].
Guo, DL ;
Lu, Z .
JOURNAL OF GENERAL PHYSIOLOGY, 2000, 115 (06) :799-813
[9]  
GUY HR, 1995, SOC GEN PHY, V50, P1
[10]   A FUNCTIONAL CONNECTION BETWEEN THE PORES OF DISTANTLY RELATED ION CHANNELS AS REVEALED BY MUTANT K+ CHANNELS [J].
HEGINBOTHAM, L ;
ABRAMSON, T ;
MACKINNON, R .
SCIENCE, 1992, 258 (5085) :1152-1155