Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors

被引:356
作者
Marti, HH [1 ]
Risau, W [1 ]
机构
[1] Max Planck Inst Physiol & Clin Res, Dept Mol Cell Biol, D-61231 Bad Nauheim, Germany
关键词
D O I
10.1073/pnas.95.26.15809
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases, Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia, VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression, Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus, Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver, VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia, Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.
引用
收藏
页码:15809 / 15814
页数:6
相关论文
共 52 条
[1]   DIFFERENTIAL EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR (VASCULAR-PERMEABILITY FACTOR) FORMS IN RAT-TISSUES [J].
BACIC, M ;
EDWARDS, NA ;
MERRILL, MJ .
GROWTH FACTORS, 1995, 12 (01) :11-15
[2]   UP-REGULATION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR EXPRESSION INDUCED BY MYOCARDIAL-ISCHEMIA - IMPLICATIONS FOR CORONARY ANGIOGENESIS [J].
BANAI, S ;
SHWEIKI, D ;
PINSON, A ;
CHANDRA, M ;
LAZAROVICI, G ;
KESHET, E .
CARDIOVASCULAR RESEARCH, 1994, 28 (08) :1176-1179
[3]   VASCULAR-PERMEABILITY FACTOR (VASCULAR ENDOTHELIAL GROWTH-FACTOR) GENE IS EXPRESSED DIFFERENTIALLY IN NORMAL-TISSUES, MACROPHAGES, AND TUMORS [J].
BERSE, B ;
BROWN, LF ;
VANDEWATER, L ;
DVORAK, HF ;
SENGER, DR .
MOLECULAR BIOLOGY OF THE CELL, 1992, 3 (02) :211-220
[4]  
BREIER G, 1992, DEVELOPMENT, V114, P521
[5]   COORDINATE EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR RECEPTOR-1 (FLT-1) AND ITS LIGAND SUGGESTS A PARACRINE REGULATION OF MURINE VASCULAR DEVELOPMENT [J].
BREIER, G ;
CLAUSS, M ;
RISAU, W .
DEVELOPMENTAL DYNAMICS, 1995, 204 (03) :228-239
[6]  
Breier G, 1997, THROMB HAEMOSTASIS, V78, P678
[7]   Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression [J].
Brogi, E ;
Schatteman, G ;
Wu, T ;
Kim, EA ;
Varticovski, L ;
Keyt, B ;
Isner, JM .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 97 (02) :469-476
[8]   Oxygen sensing and molecular adaptation to hypoxia [J].
Bunn, HF ;
Poyton, RO .
PHYSIOLOGICAL REVIEWS, 1996, 76 (03) :839-885
[9]  
CLAFFEY KP, 1992, J BIOL CHEM, V267, P16317
[10]  
Damert A, 1997, CANCER RES, V57, P3860