Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex.: Kinetics of reconstitution of O2 evolution by photoactivation

被引:90
作者
Baranov, SV
Tyryshkin, AM
Katz, D
Dismukes, GC [1 ]
Ananyev, GM
Klimov, VV
机构
[1] Princeton Univ, Dept Chem, Hoyt Lab, Princeton, NJ 08544 USA
[2] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA
[3] Russian Acad Sci, Inst Basic Biol Problems, Pushchino 142290, Moscow Region, Russia
关键词
D O I
10.1021/bi034858n
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Assembly of the inorganic core (Mn4OxCa1Cly) of the water oxidizing enzyme of oxygenic photosynthesis generates O-2 evolution capacity via the photodriven binding and photooxidation of the free inorganic cofactors within the cofactor-depleted enzyme (apo-WOC-PSII) by a process called photoactivation. Using in vitro photoactivation of spinach PSII membranes, we identify a new lower affinity site for bicarbonate interaction in the WOC. Bicarbonate addition causes a 300% stimulation of the rate and a 50% increase in yield of photoassembled PSII centers when using Mn2+ and Ca2+ concentrations that are 10-50-fold larger range than previously examined. Maintenance of a fixed Mn2+/Ca2+ ratio (1:500) produces the fastest rates and highest yields of photoactivation, which has implications for intracellular cofactor homeostasis. A two-step (biexponential) model is shown to accurately fit the assembly kinetics over a 200-fold range of Mn2+ concentrations. The first step, the binding and photooxidation of Mn2+ to Mn3+, is specifically stimulated via formation of a ternary complex between Mn2+, bicarbonate, and apo-WOC-PSII, having a proposed stoichiometry of [Mn2+(HCO3-)]. This low-affinity bicarbonate complex is thermodynamically easier to oxidize than the aqua precursor, [Mn2+-(OH2)]. The photooxidized intermediate, [Mn3+(HCO3-)], is longer lived and increases the photoactivation yield by suppressing irreversible photodamage to the cofactor-free apo-WOC-PSII (photoinhibition). Bicarbonate does not affect the second (rate-limiting) dark step of photoactivation, attributed to a protein conformational change. Together with the previously characterized high-affinity site, these results reveal that bicarbonate is a multifunctional "native" cofactor important for photoactivation and photoprotection of the WOC-PSII complex.
引用
收藏
页码:2070 / 2079
页数:10
相关论文
共 54 条
[1]   Function of tyrosine Z in water oxidation by photosystem II:: Electrostatical promotor instead of hydrogen abstractor [J].
Ahlbrink, R ;
Haumann, M ;
Cherepanov, D ;
Bögershausen, O ;
Mulkidjanian, A ;
Junge, W .
BIOCHEMISTRY, 1998, 37 (04) :1131-1142
[2]  
ANAN'EV G M, 1988, Biophysics (English Translation of Biofizika), V33, P637
[3]   Assembly of the tetra-Mn site of photosynthetic water oxidation by photoactivation: Mn stoichiometry and detection of a new intermediate [J].
Ananyev, GM ;
Dismukes, GC .
BIOCHEMISTRY, 1996, 35 (13) :4102-4109
[4]   High-resolution kinetic studies of the reassembly of the tetra-manganese cluster of photosynthetic water oxidation: Proton equilibrium, cations, and electrostatics [J].
Ananyev, GM ;
Dismukes, GC .
BIOCHEMISTRY, 1996, 35 (46) :14608-14617
[5]   The inorganic biochemistry of photosynthetic oxygen evolution/water oxidation [J].
Ananyev, GM ;
Zaltsman, L ;
Vasko, C ;
Dismukes, GC .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1503 (1-2) :52-68
[6]   Bicarbonate accelerates assembly of the inorganic core of the water-oxidizing complex in manganese-depleted photosystem II: A proposed biogeochemical role for atmospheric carbon dioxide in oxygenic photosynthesis [J].
Baranov, SV ;
Ananyev, GM ;
Klimov, VV ;
Dismukes, GC .
BIOCHEMISTRY, 2000, 39 (20) :6060-6065
[7]  
BARANOV SV, UNPUB
[8]  
Bertelson RC, 1999, T APPL CHEM, V1, P11
[9]  
BLUBAUGH DJ, 1992, PHOTOSYNTH RES, V34, P147
[10]   PHOTOINHIBITION OF HYDROXYLAMINE-EXTRACTED PHOTOSYSTEM-II MEMBRANES - IDENTIFICATION OF THE SITES OF PHOTODAMAGE [J].
BLUBAUGH, DJ ;
ATAMIAN, M ;
BABCOCK, GT ;
GOLBECK, JH ;
CHENIAE, GM .
BIOCHEMISTRY, 1991, 30 (30) :7586-7597