Characterization of underfill/passivation interfacial adhesion for direct chip attach assemblies using fracture toughness and hydro-thermal fatigue measurements
被引:15
作者:
Gurumurthy, CK
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USACornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
Gurumurthy, CK
[1
]
Norris, LG
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USACornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
Norris, LG
[1
]
Hui, CY
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USACornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
Hui, CY
[1
]
Kramer, EJ
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USACornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
Kramer, EJ
[1
]
机构:
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
Delamination of underfill/passivation interface is a major cause for failure of direct chip attach (DCA) assemblies during reliability testing. We have used a modified asymmetric double cantilever beam (ADCB) testing for measuring the fracture toughness of the interface and a newly developed hydro-thermal fatigue testing (based on non-contact fiber optic displacement sensor) for measuring the fatigue crack growth rate along the interface. We have developed and used a simple anhydride cured model underfill epoxy (that captures the basic chemistry of the underfills) and a commercially available PMDA/ODA passivation for this study. Both the fracture toughness (determined through ADCB testing) and the fatigue crack growth rate (determined through hydro-thermal fatigue testing) are dependent on the mechanical phase angle under which the crack grows.