Newly approved and promising antidiabetic agents

被引:24
作者
Combettes, Murielle [1 ]
Kargar, Catherine [1 ]
机构
[1] Inst Rech Servier, F-92150 Suresnes, France
来源
THERAPIE | 2007年 / 62卷 / 04期
关键词
type; 2; diabetes; amylin; GLP-1; analogs; DPPIV inhibitors; glucokinase activators; 11 beta-HSD inhibitors;
D O I
10.2515/therapie:2007054
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Type 2 diabetes is an endocrine/metabolic disease characterized by hyperglycemia. It is now well established that insulin resistance and pancreatic beta-cell dysfunction/failure are the two major components of the physiopathology of the disease. Current available therapies do not successfully enable patients with type 2 diabetes to reach glycemic goals. Even with intensive treatment type 2 diabetic patients may face spikes in blood glucose after meals, weight gain, and a loss of effectiveness of their treatments over time. The novel agents recently developed by the Pharmaceutical Industry may either provide an alternative therapeutic strategy or offer useful adjuncts to existing therapies. Glucagon-like peptide 1 (GLP-1), produced in the small intestine and amylin, produced by beta cells in the pancreas, also have glucose lowering effects. Amylin is an hormone secreted after a meal, having a complementary action to insulin. GLP-1 also released in a post-prandial manner, promotes insulin production and secretion, reduces glucagon secretion, delays gastric emptying and induces a feeling of fullness. The most promising effect of GLP-1 is its ability to increase beta-cell mass by stimulating neogenesis and reducing apoptosis in rodents. However the fact that GLP-1 is rapidly degraded by dipeptidylpeptidase IV (DPPIV) in vivo reduces its usefulness. Thus, in order to improve therapeutic efficacy, two approaches have been investigated: the development of GLP-1 analogs resistant to degradation or the development of DPP-IV inhibitors. Synthetic analogs of amylin (pramlintide), GLP-1 (exenatide) and inhibitors of the degradation of GLP-1 (sitagliptin, DPP-IV inhibitor) are now available for clinical use. Promising biological targets being investigated include those leading to insulin sensitization (11 beta-HSD-1 inhibitors and antagonists of glucocorticoids receptor), reducing hepatic glucose output (antagonist of glucagon receptor, inhibitors of glycogen phosphorylase and fructose-1,6-biphosphatase) and finally increasing urinary elimination of excess glucose (SGLT inhibitors). A particular role is played by glucokinase activators (GKA) which can both increase insulin secretion and improve hepatic glucose metabolism. In this review, we present a summary of the data available on newly approved treatments (amylin and GLP-1 analogs as well as DPP-IV inhibitors) and give an overview of the targets currently being studied for the treatment of type 2 diabetes with an emphasis on the small molecule drug design.
引用
收藏
页码:293 / 310
页数:18
相关论文
共 116 条
[1]   Increased expression of 11β-hydroxysteroid dehydrogenase type 1 in type 2 diabetic myotubes [J].
Abdallah, BM ;
Beck-Nielsen, H ;
Gaster, M .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2005, 35 (10) :627-634
[2]   Dipeptidyl peptidase-4 inhibitors -: Clinical data and clinical implications [J].
Ahren, Bo .
DIABETES CARE, 2007, 30 (06) :1344-1350
[3]   Selective inhibition of 11β-hydroxysteroid dehydrogenase type 1 improves hepatic insulin sensitivity in hyperglycemic mice strains [J].
Alberts, P ;
Nilsson, C ;
Selén, G ;
Engblom, LOM ;
Edling, NHM ;
Norling, S ;
Klingström, G ;
Larsson, C ;
Forsgren, M ;
Ashkzari, M ;
Nilsson, CE ;
Fiedler, M ;
Bergqvist, E ;
Öhman, B ;
Björkstrand, E ;
Abrahmsén, LB .
ENDOCRINOLOGY, 2003, 144 (11) :4755-4762
[4]   Selective inhibition of 11β-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice [J].
Alberts, P ;
Engblom, L ;
Edling, N ;
Forsgren, M ;
Klingström, G ;
Larsson, C ;
Rönquist-Nii, Y ;
Öhman, B ;
Abrahmsén, L .
DIABETOLOGIA, 2002, 45 (11) :1528-1532
[5]   Glucose transporter and Na+/glucose cotransporter as molecular targets of anti-diabetic drugs [J].
Asano, T ;
Ogihara, T ;
Katagiri, H ;
Sakoda, H ;
Ono, H ;
Fujishiro, M ;
Anai, M ;
Kurihara, H ;
Uchijima, Y .
CURRENT MEDICINAL CHEMISTRY, 2004, 11 (20) :2717-2724
[6]  
ASCHNER P, 2006, DIABETES S1, V55
[7]   Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes [J].
Aschner, Pablo ;
Kipnes, Mark S. ;
Lunceford, Jared K. ;
Sanchez, Matilde ;
Mickel, Carolyn ;
Williams-Herman, Debora E. .
DIABETES CARE, 2006, 29 (12) :2632-2637
[8]  
BAKER L, 1970, LANCET, V2, P13
[9]  
BALAS B, 2006, DIABETES S1, V55, pOR122
[10]   Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms [J].
Balkan, B ;
Li, X .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2000, 279 (04) :R1449-R1454