Symmetric orthonormal scaling functions and wavelets with dilation factor 4

被引:87
作者
Han, B [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
关键词
orthonormal scaling function; smoothness; symmetry; wavelets;
D O I
10.1023/A:1018948314471
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that in the univariate case, up to an integer shift and possible sign change, there is no dyadic compactly supported symmetric orthonormal scaling function except for the Haar function. In this paper we are concerned with the construction of symmetric orthonormal scaling functions with dilation factor d = 4. Several examples of such orthonormal scaling functions are provided in this paper. In particular, two examples of C-1 orthonormal scaling functions, which are symmetric about 0 and 1/6, respectively, are presented. We will then discuss how to construct symmetric wavelets from these scaling functions. We explicitly construct the corresponding orthonormal symmetric wavelets for all the examples given in this paper.
引用
收藏
页码:221 / 247
页数:27
相关论文
共 28 条
[1]  
BOMAN J, 1976, C MATH SOC J BOLYAI, P273
[2]  
CAVARETTA AS, 1991, MEM AM MATH SOC, V93
[3]   CONSTRUCTION OF COMPACTLY SUPPORTED SYMMETRICAL AND ANTISYMMETRIC ORTHONORMAL WAVELETS WITH SCALE=3 [J].
CHUI, CK ;
LIAN, JA .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (01) :21-51
[4]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS .3. BETTER FREQUENCY RESOLUTION [J].
COHEN, A ;
DAUBECHIES, I .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (02) :520-527
[5]  
COHEN A, 1996, REGULARITY MULTIVARI
[6]   2-SCALE DIFFERENCE-EQUATIONS .2. LOCAL REGULARITY, INFINITE PRODUCTS OF MATRICES AND FRACTALS [J].
DAUBECHIES, I ;
LAGARIAS, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :1031-1079
[7]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[8]  
Daubechies I, 1992, 10 LECT WAVELETS
[9]  
DeVore Ronald A., 1993, CONSTRUTIVE APPROXIM, V303, DOI DOI 10.1007/978-3-662-02888-9
[10]   MODULI OF SMOOTHNESS USING DISCRETE-DATA [J].
DITZIAN, Z .
JOURNAL OF APPROXIMATION THEORY, 1987, 49 (02) :115-129