Renewable hydrogen: carbon formation on Ni and Ru catalysts during ethanol steam-reforming

被引:56
作者
Rass-Hansen, Jeppe [1 ]
Christensen, Claus Hviid
Sehested, Jens
Helveg, Stig
Rostrup-Nielsen, Jens R.
Dahl, Soren
机构
[1] Tech Univ Denmark, Ctr Sustainable & Green Chem, Dept Chem, DK-2800 Lyngby, Denmark
[2] Haldor Topsoe Res Labs, DK-2800 Lyngby, Denmark
关键词
D O I
10.1039/b702890c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomass is probably the only realistic green and sustainable carbonaceous alternative to fossil fuels. By degradation and fermentation, it can be converted into bioethanol, which is a chemical with a range of possible applications. In this study, the catalytic steam-reforming of ethanol for the production of hydrogen is investigated, along with quantitative and qualitative determinations of carbon formation on the catalysts by TPO and TEM experiments. A Ru/ MgAl2O4 catalyst, a Ni/MgAl2O4 catalyst as well as Ag-and K-promoted Ni/ MgAl2O4 catalysts were studied. The operating temperature was between 673 and 873 K, and a 25 vol% ethanol -water mixture was employed. Deactivation of the catalysts by carbon formation is the main obstacle for industrial use of this process. Carbon formation was found to be highly affected by the operating temperature and the choice of catalyst. The effect of Ag addition was a rapid deactivation of the catalyst due to an enhanced gum carbon formation on the Ni crystals. Contrary to this, the effect of K addition was a prolonged resistance against carbon formation and therefore against deactivation. The Ru catalyst operates better than all the Ni catalysts, especially at lower temperatures.
引用
收藏
页码:1016 / 1021
页数:6
相关论文
共 27 条
[1]   Bio-ethanol catalytic steam reforming over supported metal catalysts [J].
Auprêtre, F ;
Descorme, C ;
Duprez, D .
CATALYSIS COMMUNICATIONS, 2002, 3 (06) :263-267
[2]   Ethanol steam reforming over MgxNi1-xAl2O3 spinel oxide-supported Rh catalysts [J].
Aupretre, F ;
Descorme, C ;
Duprez, D ;
Casanave, D ;
Uzio, D .
JOURNAL OF CATALYSIS, 2005, 233 (02) :464-477
[3]   Experimental and theoretical investigation of using gasoline-ethanol blends in spark-ignition engines [J].
Bayraktar, H .
RENEWABLE ENERGY, 2005, 30 (11) :1733-1747
[4]   CARBON DEPOSITION AND METHANE STEAM REFORMING ON SILICA-SUPPORTED NI-CU CATALYSTS [J].
BERNARDO, CA ;
ALSTRUP, I ;
ROSTRUPNIELSEN, JR .
JOURNAL OF CATALYSIS, 1985, 96 (02) :517-534
[5]   Design of a surface alloy catalyst for steam reforming [J].
Besenbacher, F ;
Chorkendorff, I ;
Clausen, BS ;
Hammer, B ;
Molenbroek, AM ;
Norskov, JK ;
Stensgaard, I .
SCIENCE, 1998, 279 (5358) :1913-1915
[6]  
Brown LF, 2001, INT J HYDROGEN ENERG, V26, P381, DOI 10.1016/S0360-3199(00)00092-6
[7]   Ethanol steam reforming on Rh/Al2O3 catalysts [J].
Cavallaro, S .
ENERGY & FUELS, 2000, 14 (06) :1195-1199
[8]  
Chorkendorf I., 2003, CONCEPTS MODERN CATA
[9]   Renewable hydrogen from ethanol by autothermal reforming [J].
Deluga, GA ;
Salge, JR ;
Schmidt, LD ;
Verykios, XE .
SCIENCE, 2004, 303 (5660) :993-997
[10]   On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts [J].
Fierro, V ;
Akdim, O ;
Mirodatos, C .
GREEN CHEMISTRY, 2003, 5 (01) :20-24