Fungal hydrogenosomes contain mitochondrial heat-shock proteins

被引:22
作者
van der Giezen, M
Birdsey, GM
Horner, DS
Lucocq, J
Dyal, PL
Benchimol, M
Danpure, CJ
Embley, TM
机构
[1] Nat Hist Museum, Dept Zool, London SW7 5BD, England
[2] UCL, Dept Biol, London, England
[3] Univ Dundee, Sch Life Sci, Dundee DD1 4HN, Scotland
[4] Univ Santa Ursula, Rio De Janeiro, Brazil
关键词
heat-shock proteins; hydrogenosomes; mitochondria; anaerobic eukaryotes; evolution;
D O I
10.1093/molbev/msg103
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
At least three groups of anaerobic eukaryotes lack mitochondria and instead contain hydrogenosomes, peculiar organelles that make energy and excrete hydrogen. Published data indicate that ciliate and trichomonad hydrogenosomes share common ancestry with mitochondria, but the evolutionary origins of fungal hydrogenosomes have been controversial. We have now isolated full-length genes for heat shock proteins 60 and 70 from the anaerobic fungus Neocallimastix patriciarum, which phylogenetic analyses reveal share common ancestry with mitochondrial orthologues. In aerobic organisms these proteins function in mitochondrial import and protein folding. Homologous antibodies demonstrated the localization of both proteins to fungal hydrogenosomes. Moreover, both sequences contain amino-terminal extensions that in heterologous targeting experiments were shown to be necessary and sufficient to locate both proteins and green fluorescent protein to the mitochondria of mammalian cells. This finding, that fungal hydrogenosomes use mitochondrial targeting signals to import two proteins of mitochondrial ancestry that play key roles in aerobic mitochondria, provides further strong evidence that the fungal organelle is also of mitochondrial ancestry. The extraordinary capacity of eukaryotes to repeatedly evolve hydrogen-producing organelles apparently reflects a general ability to modify the biochemistry of the mitochondrial compartment.
引用
收藏
页码:1051 / 1061
页数:11
相关论文
共 66 条
[1]   A hydrogenosome with a genome [J].
Akhmanova, A ;
Voncken, F ;
van Alen, T ;
van Hoek, A ;
Boxma, B ;
Vogels, G ;
Veenhuiss, M ;
Hackstein, JHP .
NATURE, 1998, 396 (6711) :527-528
[2]   Extensive feature detection of N-terminal protein sorting signals [J].
Bannai, H ;
Tamada, Y ;
Maruyama, O ;
Nakai, K ;
Miyano, S .
BIOINFORMATICS, 2002, 18 (02) :298-305
[3]   A double membrane surrounds the hydrogenosomes of the anaerobic fungus Neocallimastix frontalis [J].
Benchimol, M ;
Durand, R ;
Almeida, JCD .
FEMS MICROBIOLOGY LETTERS, 1997, 154 (02) :277-282
[4]   Further studies on the organization of the hydrogenosome in Tritrichomonas foetus [J].
Benchimol, M ;
Almeida, JCA ;
deSouza, W .
TISSUE & CELL, 1996, 28 (03) :287-299
[5]  
BOORSTEIN WR, 1994, J MOL EVOL, V38, P1
[6]   scsB, a cDNA encoding the hydrogenosomal beta subunit of succinyl-CoA synthetase from the anaerobic fungus Neocallimastix frontalis [J].
Brondijk, THC ;
Durand, R ;
vanderGiezen, M ;
Gottschal, JC ;
Prins, RA ;
Fevre, M .
MOLECULAR & GENERAL GENETICS, 1996, 253 (03) :315-323
[7]   Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA [J].
Brookman, JL ;
Mennim, G ;
Trinci, APJ ;
Theodorou, MK ;
Tuckwell, DS .
MICROBIOLOGY-SGM, 2000, 146 :393-403
[8]   The Hsp70 and Hsp60 chaperone machines [J].
Bukau, B ;
Horwich, AL .
CELL, 1998, 92 (03) :351-366
[9]   Computational method to predict mitochondrially imported proteins and their targeting sequences [J].
Claros, MG ;
Vincens, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 241 (03) :779-786
[10]  
COCHRAN AJ, 1977, T OPHTHAL SOC UK, V97, P385