Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine

被引:330
作者
Mothet, JP [1 ]
Pollegioni, L [1 ]
Ouanounou, G [1 ]
Martineau, M [1 ]
Fossier, P [1 ]
Baux, G [1 ]
机构
[1] Univ Insubria, Dept Biotechnol & Mol Sci, I-21100 Varese, Italy
关键词
glia; synaptobrevin; D-amino acid; vesicles; tetanus neurotoxin;
D O I
10.1073/pnas.0408483102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The gliotransmitter D-serine is released upon (S)-alpha-amino-3-hydroxy5-methyl-4-isoxazolepropionic acid/kainate and metabotropic glutamate receptor stimulation, but the mechanisms involved are unknown. Here, by using a highly sensitive bioassay to continuously monitor extracellular D-serine levels, we have investigated the pathways used in its release. We reveal that D-serine release is inhibited by removal of extracellular calcium and augmented by increasing extracellular calcium or after treatment with the Ca2+ ionophore A23187. Furthermore, release of the amino acid is considerably reduced after depletion of thapsigargin-sensitive intracellular Ca2+ stores or chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate-acetoxy-methyl ester. Interestingly, D-serine release also was markedly reduced by concanamycin A, a vacuolar-type H+-ATPase inhibitor, indicating a role for the vesicular proton gradient in the transmitter storage/release. In addition, agonist-evoked D-serine release was sensitive to tetanus neurotoxin. Finally, immunocytochemical and sucrose density gradient analysis revealed that a large fraction of D-serine colocalized with synaptobrevin/VAMP2, suggesting that it is stored in VAMP2-bearing vesicles. In summary, our study reveals the cellular mechanisms subserving D-serine release and highlights the importance of the glial cell exocytotic pathway in influencing CNS levels of extracellular D-serine.
引用
收藏
页码:5606 / 5611
页数:6
相关论文
共 43 条
[1]   SNARE protein-dependent glutamate release from astrocytes [J].
Araque, A ;
Li, NZ ;
Doyle, RT ;
Haydon, PG .
JOURNAL OF NEUROSCIENCE, 2000, 20 (02) :666-673
[2]   A neuron-glia signalling network in the active brain [J].
Bezzi, P ;
Volterra, A .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :387-394
[3]   Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate [J].
Bezzi, P ;
Gundersen, V ;
Galbete, JL ;
Seifert, G ;
Steinhäuser, C ;
Pilati, E ;
Volterra, A .
NATURE NEUROSCIENCE, 2004, 7 (06) :613-620
[4]   Prostaglandins stimulate calcium-dependent glutamate release in astrocytes [J].
Bezzi, P ;
Carmignoto, G ;
Pasti, L ;
Vesce, S ;
Rossi, D ;
Rizzini, BL ;
Pozzan, T ;
Volterra, A .
NATURE, 1998, 391 (6664) :281-285
[5]   PHYSIOLOGY OF TRANSFORMED GLIAL-CELLS [J].
BRISMAR, T .
GLIA, 1995, 15 (03) :231-243
[6]   A regulated secretory pathway in cultured hippocampal astrocytes [J].
Calegari, F ;
Coco, S ;
Taverna, E ;
Bassetti, M ;
Verderio, C ;
Corradi, N ;
Matteoli, M ;
Rosa, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22539-22547
[7]   Reciprocal communication systems between astrocytes and neurones [J].
Carmignoto, G .
PROGRESS IN NEUROBIOLOGY, 2000, 62 (06) :561-581
[8]   Storage and release of ATP from Astrocytes in culture [J].
Coco, S ;
Calegari, F ;
Pravettoni, E ;
Pozzi, D ;
Taverna, E ;
Rosa, P ;
Matteoli, M ;
Verderio, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (02) :1354-1362
[9]   Connexins regulate calcium signaling by controlling ATP release [J].
Cotrina, ML ;
Lin, JHC ;
Alves-Rodrigues, A ;
Liu, S ;
Li, J ;
Azmi-Ghadimi, H ;
Kang, J ;
Naus, CCG ;
Nedergaard, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15735-15740
[10]   Electrophysiological and molecular evidence of L-(Cav1), N- (Cav2.2), and R- (Cav2.3) type Ca2+ channels in rat cortical astrocytes [J].
D'ascenzo, M ;
Vairano, M ;
Andreassi, C ;
Navarra, P ;
Azzena, GB ;
Grassi, C .
GLIA, 2004, 45 (04) :354-363