Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum -: A novel approach for metabolic flux analysis

被引:84
作者
Wittmann, C [1 ]
Heinzle, E [1 ]
机构
[1] Univ Saarland, Biochem Engn Inst, D-66041 Saarbrucken, Germany
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2001年 / 268卷 / 08期
关键词
MALDI-TOF mass spectrometry; metabolic flux analysis; Corynebacterium glutamicum; lysine; C-13; tracer;
D O I
10.1046/j.1432-1327.2001.02129.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the present work, a novel comprehensive approach of C-13-tracer studies with labeling measurements by MALDI-TOF MS, and metabolite balancing was developed to elucidate key fluxes in the central metabolism of lysine producing Corynebacterium glutamicum during batch culture. MALDI-TOF MS methods established allow the direct quantification of labeling patterns of low molecular mass Corynebacterium products from 1 muL of diluted culture supernatant. A mathematical model of the central Corynebacterium metabolism was developed, that describes the carbon transfer through the network via matrix calculations in a generally applicable way and calculates steady state mass isotopomer distributions of the involved metabolites. The model was applied for both experimental planning of tracer experiments and parameter estimation, Metabolic fluxes were calculated from stoichiometric data and from selected mass intensity ratios of lysine, alanine, and trehalose measured by MALDI-TOF MS in tracer experiments either with 1-C-13 glucose or with mixtures of C-13(6)/C-12(6) glucose. During the phase of maximum lysine production C. glutamicum ATCC 21253 exhibited high relative fluxes into the pentose phosphate pathway of 71%, a highly reversible glucose-6-phosphate isomerase, significant backfluxes from the tricarboxylic acid cycle to the pyruvate node consuming the lysine precursor oxaloacetate, 36% net flux of anaplerotic carboxylation and 63% contribution of the dehydrogenase branch in the lysine biosynthetic pathway. Due to the straightforward and simple measurements of selected labeling patterns by MALDI-TOF MS sensitively reflecting the flux parameters of interest, the presented approach has an excellent potential to extend metabolic flux analysis from single experiments with enormous experimental effort to a broadly applied technique.
引用
收藏
页码:2441 / 2455
页数:15
相关论文
共 28 条
[1]  
[Anonymous], BIOTECHNOLOGY PRODUC
[2]   Isotopomer Analysis Using GC-MS [J].
Christensen, Bjarke ;
Nielsen, Jens .
METABOLIC ENGINEERING, 1999, 1 (04) :282-290
[3]   A C-13 mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts [J].
Comte, B ;
Vincent, G ;
Bouchard, B ;
Jette, M ;
Cordeau, S ;
DesRosiers, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (42) :26125-26131
[4]   GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing [J].
Dauner, M ;
Sauer, U .
BIOTECHNOLOGY PROGRESS, 2000, 16 (04) :642-649
[5]   Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose [J].
Dominguez, H ;
Rollin, C ;
Guyonvarch, A ;
Guerquin-Kern, JL ;
Cocaign-Bousquet, M ;
Lindley, ND .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 254 (01) :96-102
[6]   BIOLOGY OF L-LYSINE OVERPRODUCTION BY CORYNEBACTERIUM-GLUTAMICUM [J].
EGGELING, L .
AMINO ACIDS, 1994, 6 (03) :261-272
[7]   CLONING, SEQUENCE-ANALYSIS, EXPRESSION, AND INACTIVATION OF THE CORYNEBACTERIUM-GLUTAMICUM-ICD GENE ENCODING ISOCITRATE DEHYDROGENASE AND BIOCHEMICAL-CHARACTERIZATION OF THE ENZYME [J].
EIKMANNS, BJ ;
RITTMANN, D ;
SAHM, H .
JOURNAL OF BACTERIOLOGY, 1995, 177 (03) :774-782
[8]   Effect of reversible reactions on isotope label redistribution - Analysis of the pentose phosphate pathway [J].
Follstad, BD ;
Stephanopoulos, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 252 (03) :360-371
[9]  
Hagino H., 1974, US Patent, Patent No. 3787287
[10]  
Marx A, 1996, BIOTECHNOL BIOENG, V49, P111, DOI 10.1002/(SICI)1097-0290(19960120)49:2<111::AID-BIT1>3.0.CO