Gaussian processes and universal parametric decorrelations of wavefunctions

被引:8
作者
Mitchell, D
Alhassid, Y
Kusnezov, D
机构
[1] Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven
关键词
D O I
10.1016/0375-9601(96)00232-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gaussian processes that depend on a parameter lead to universal parametric correlations of spectra and wavefunctions after an appropriate scaling of the parameter. The most general Gaussian process is described by the exponent eta which characterizes the diffusive behavior of its energy levels. We discuss the scaling required for such processes and show that they lead to the same parametric correlators when considered as functions of (Delta (x) over bar)(eta/2) where (x) over bar is the scaled parameter. Using simulations of Gaussian processes, we demonstrate this scaling and universality for the parametric decorrelation of the wavefunctions as measured by their overlap, and compute the respective distributions of that overlap.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 24 条
[1]   UNIVERSAL PARAMETRIC CORRELATIONS OF EIGENFUNCTIONS IN CHAOTIC AND DISORDERED-SYSTEMS [J].
ALHASSID, Y ;
ATTIAS, H .
PHYSICAL REVIEW LETTERS, 1995, 74 (23) :4635-4638
[2]  
ALTSHULER BL, 1986, ZH EKSP TEOR FIZ+, V91, P220
[3]  
ATTIAS H, 1995, THESIS YALE
[4]   STATISTICAL PROPERTIES OF PARAMETER-DEPENDENT CLASSICALLY CHAOTIC QUANTUM-SYSTEMS [J].
AUSTIN, EJ ;
WILKINSON, M .
NONLINEARITY, 1992, 5 (05) :1137-1150
[5]   BROWNIAN-MOTION MODEL FOR PARAMETRIC CORRELATIONS IN THE SPECTRA OF DISORDERED METALS [J].
BEENAKKER, CWJ .
PHYSICAL REVIEW LETTERS, 1993, 70 (26) :4126-4129
[6]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[7]   CLASS OF MATRIX ENSEMBLES [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (01) :90-&
[8]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+
[9]   THE PARAMETRIC NUMBER VARIANCE [J].
GOLDBERG, J ;
SMILANSKY, U ;
BERRY, MV ;
SCHWEIZER, W ;
WUNNER, G ;
ZELLER, G .
NONLINEARITY, 1991, 4 (01) :1-14
[10]  
Gutzwiller MC, 1990, CHAOS CLASSICAL QUAN