Absence of wave packet diffusion in disordered nonlinear systems

被引:191
作者
Kopidakis, G. [1 ,2 ]
Komineas, S. [1 ]
Flach, S. [1 ]
Aubry, S. [1 ,3 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ Crete, Dept Mat Sci & Technol, Iraklion 71003, Greece
[3] CEA Saclay, Lab Leon Brillouin, CNRS, F-91191 Gif Sur Yvette, France
关键词
INTRABAND DISCRETE BREATHERS; LOCALIZED EXCITATIONS; HAMILTONIAN NETWORKS; DELOCALIZATION; TRANSPORT; LATTICES;
D O I
10.1103/PhysRevLett.100.084103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the spreading of an initially localized wave packet in two nonlinear chains (discrete nonlinear Schrodinger and quartic Klein-Gordon) with disorder. Previous studies suggest that there are many initial conditions such that the second moment of the norm and energy density distributions diverges with time. We find that the participation number of a wave packet does not diverge simultaneously. We prove this result analytically for norm-conserving models and strong enough nonlinearity. After long times we find a distribution of nondecaying yet interacting normal modes. The Fourier spectrum shows quasiperiodic dynamics. Assuming this result holds for any initially localized wave packet, we rule out the possibility of slow energy diffusion. The dynamical state could approach a quasiperiodic solution (Kolmogorov-Arnold-Moser torus) in the long time limit.
引用
收藏
页数:4
相关论文
共 31 条
[1]   PERTURBATION-THEORY FOR PERIODIC-ORBITS IN A CLASS OF INFINITE DIMENSIONAL HAMILTONIAN-SYSTEMS [J].
ALBANESE, C ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (01) :193-205
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]  
Bourgain J, 2008, J EUR MATH SOC, V10, P1
[4]   Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle [J].
Clement, D. ;
Varon, A. F. ;
Retter, J. A. ;
Sanchez-Palencia, L. ;
Aspect, A. ;
Bouyer, P. .
NEW JOURNAL OF PHYSICS, 2006, 8
[5]   LOCALIZED EXCITATIONS IN 2-DIMENSIONAL HAMILTONIAN LATTICES [J].
FLACH, S ;
KLADKO, K ;
WILLIS, CR .
PHYSICAL REVIEW E, 1994, 50 (03) :2293-2303
[6]   INTEGRABILITY AND LOCALIZED EXCITATIONS IN NONLINEAR DISCRETE-SYSTEMS [J].
FLACH, S ;
WILLIS, CR ;
OLBRICH, E .
PHYSICAL REVIEW E, 1994, 49 (01) :836-850
[7]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264
[8]   LOCALIZED EXCITATIONS IN A DISCRETE KLEIN-GORDON SYSTEM [J].
FLACH, S ;
WILLIS, CR .
PHYSICS LETTERS A, 1993, 181 (03) :232-238
[9]   Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide [J].
Fort, C ;
Fallani, L ;
Guarrera, V ;
Lye, JE ;
Modugno, M ;
Wiersma, DS ;
Inguscio, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (17)
[10]   LOCALIZATION IN DISORDERED, NONLINEAR DYNAMIC-SYSTEMS [J].
FROHLICH, J ;
SPENCER, T ;
WAYNE, CE .
JOURNAL OF STATISTICAL PHYSICS, 1986, 42 (3-4) :247-274