Analysis of subgrid scale turbulence using the Boltzmann Bhatnagar-Gross-Krook kinetic equation

被引:38
作者
Chen, HD
Succi, S
Orszag, S
机构
[1] Exa Corp, Lexington, MA 02420 USA
[2] Ist Applicaz Calcolo, I-00161 Rome, Italy
[3] Yale Univ, Dept Math, New Haven, CT 06520 USA
[4] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
关键词
D O I
10.1103/PhysRevE.59.R2527
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The use of the Boltzmann kinetic equation provides a number of potential technical advantages in the analysis of subgrid scale fluid turbulence as compared to the Navier-Stokes hydrodynamic representation. The only nonlinearity in the Bhatnagar-Gross-Krook kinetic formalism occurs implicitly in the collision operator and is purely algebraic in form (even in real space). Since under Chapman-Enskog expansions one recovers the fluid equations, the alternative approach presented here should have straightforward applications to subgrid modeling of compressible turbulence and other more complex fluids. [S1063-651X(99)50803-9].
引用
收藏
页码:R2527 / R2530
页数:4
相关论文
共 26 条
[1]  
ALDER B, 1961, PHYS REV LETT, V18, P988
[2]   LAGRANGEAN HAMILTONIAN-FORMALISM FOR DESCRIPTION OF NAVIER-STOKES FLUIDS [J].
BECKER, RJ .
PHYSICAL REVIEW LETTERS, 1987, 58 (14) :1419-1422
[3]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[4]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[5]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[6]  
Chapman S., 1970, The Mathematical Theory of Non-Uniform Gases, V3rd
[7]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[8]  
Chenoweth HB, 1997, J INST ENVIRON SCI, V40, P8
[9]   ENERGY-SPECTRA OF CERTAIN RANDOMLY-STIRRED FLUIDS [J].
DEDOMINICIS, C ;
MARTIN, PC .
PHYSICAL REVIEW A, 1979, 19 (01) :419-422
[10]   ASYMPTOTIC TIME BEHAVIOR OF CORRELATION FUNCTIONS .1. KINETIC TERMS [J].
ERNST, MH ;
HAUGE, EH ;
VANLEEUW.JM .
PHYSICAL REVIEW A, 1971, 4 (05) :2055-&