Two novel proteins, Dos1 and Dos2, interact with Rik1 to regulate heterochromatic RNA interference and histone modification

被引:94
作者
Li, F
Goto, DB
Zaratiegui, M
Tang, X
Martienssen, R
Cande, WZ
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
关键词
D O I
10.1016/j.cub.2005.07.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Chromosomal behavior during mitosis and meiosis depends in part on heterochromatic modifications such as histone H3 lysine-9 methylation (H3K9me). In fission yeast, the Heterochromatin Protein 1 homolog Swi6 recognizes H3K9me, silences transcription, and retains cohesin at pericentromeric repeats. Heterochromatin formation also depends on processing of transcripts derived from centromeric repeats by the RNAi machinery. The DDB1 homolog, Rik1, and histone methyltransferase, CIr4, act in a complex to promote H3K9me. However, the mechanism underlying this interaction is poorly understood. Results: Using a cytological screen, we have identified two novel genes, dos1(+) and dos2(+), which are required for localization of Swi6. Deletion of either of these genes results in mitotic and meiotic chromosome missegregation, defects in mitotic centromeric cohesion and meiotic telomere clustering, and loss of heterochromatic silencing. Dos1 is predominantly located in the nucleus in a Dos2-dependent manner and directly interacts with Rik1. Each of these genes is required for the association of H3K9me with centromeric repeats, as well as for the production of small interfering RNAs. Conclusions: Dosl and Dos2 are required for the formation of heterochromatin in fission yeast. We hypothesize that the physical interaction between Dosl and Rik1 represents a role in regulating activity of the Rik1/ CIr4 complex. Dos2 contributes to this role by regulating Dosl localization. Our findings suggest a mechanism for recruitment of CIr4 in the RNAi-dependent heterochromatin pathway, in which Dos1 and Dos2 are essential.
引用
收藏
页码:1448 / 1457
页数:10
相关论文
共 48 条
[1]   POSITION EFFECT VARIEGATION AT FISSION YEAST CENTROMERES [J].
ALLSHIRE, RC ;
JAVERZAT, JP ;
REDHEAD, NJ ;
CRANSTON, G .
CELL, 1994, 76 (01) :157-169
[2]   MUTATIONS DEREPRESSING SILENT CENTROMERIC DOMAINS IN FISSION YEAST DISRUPT CHROMOSOME SEGREGATION [J].
ALLSHIRE, RC ;
NIMMO, ER ;
EKWALL, K ;
JAVERZAT, JP ;
CRANSTON, G .
GENES & DEVELOPMENT, 1995, 9 (02) :218-233
[3]   Epigenetic gene regulation by noncoding RNAs [J].
Andersen, AA ;
Panning, B .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (03) :281-289
[4]  
Bähler J, 1998, YEAST, V14, P943, DOI 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO
[5]  
2-Y
[6]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[7]   Requirement of heterochromatin for cohesion at centromeres [J].
Bernard, P ;
Maure, JF ;
Partridge, JF ;
Genier, S ;
Javerzat, JP ;
Allshire, RC .
SCIENCE, 2001, 294 (5551) :2539-2542
[8]   Schizosaccharomyces pombe Ddb1 is functionally linked to the replication checkpoint pathway [J].
Bondar, T ;
Mirkin, EV ;
Ucker, DS ;
Walden, WE ;
Mirkin, SM ;
Raychaudhuri, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (39) :37006-37014
[9]   Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER [J].
Byrne, ME ;
Groover, AT ;
Fontana, JR ;
Martienssen, RA .
DEVELOPMENT, 2003, 130 (17) :3941-3950
[10]   Heterochromatin structure and function [J].
Dillon, N .
BIOLOGY OF THE CELL, 2004, 96 (08) :631-637