Nested subgraphs of complex networks

被引:3
作者
Corominas-Murtra, Bernat [1 ]
Mendes, Jose F. F. [2 ]
Sole, Ricard V. [1 ,3 ]
机构
[1] Univ Pompeu Fabra, ICREA Complex Syst Lab, Barcelona 08003, Spain
[2] Univ Aveiro, Dept Fis, P-3810193 Aveiro, Portugal
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
D O I
10.1088/1751-8113/41/38/385003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analytically explore the scaling properties of a general class of nested subgraphs in complex networks, which includes the K-core and the K-scaffold, among others. We name such a class of subgraphs K-nested subgraphs since they generate families of subgraphs such that ... SK+1(G) subset of S-K(G) subset of SK-1(G) .... Using the so-called configuration model it is shown that any family of nested subgraphs over a network with diverging second moment and finite first moment has infinite elements (i.e. lacking a percolation threshold). Moreover, for a scale-free network with the above properties, we show that any nested family of subgraphs is self-similar by looking at the degree distribution. Both numerical simulations and real data are analyzed and display good agreement with our theoretical predictions.
引用
收藏
页数:11
相关论文
共 26 条
[1]  
ALVAREZHAMELIN JI, 2005, ARXIVORGCS0511007
[2]  
[Anonymous], 2011, Random Graphs
[3]   The nested assembly of plant-animal mutualistic networks [J].
Bascompte, J ;
Jordano, P ;
Melián, CJ ;
Olesen, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (16) :9383-9387
[4]  
Bekessy A., 1972, Studia Scientiarum Mathematicarum Hungarica, V7, P343
[5]   ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) :296-307
[6]  
Bollobas B., 1980, European Journal of Combinatorics, V1, P311
[7]   Network robustness and fragility: Percolation on random graphs [J].
Callaway, DS ;
Newman, MEJ ;
Strogatz, SH ;
Watts, DJ .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5468-5471
[8]   K-scaffold subgraphs of complex networks [J].
Corominas-Murtra, B. ;
Valverde, S. ;
Rodriguez-Caso, C. ;
Sole, R. V. .
EPL, 2007, 77 (01)
[9]   k-core organization of complex networks -: art. no. 040601 [J].
Dorogovtsev, SN ;
Goltsev, AV ;
Mendes, JFF .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[10]  
DOROGOVTSEV SN, 2007, ARXIV07050010