Anomalous scaling exponents of a white-advected passive scalar

被引:122
作者
Chertkov, M
Falkovich, G
机构
[1] Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot
关键词
D O I
10.1103/PhysRevLett.76.2706
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For Kraichnan's problem of passive scalar advection by a velocity field delta correlated in time, the limit of large space dimensionality d >> 1 is considered. Scaling exponents of the scalar field are analytically found to be zeta(2n) = (n) zeta(2) - 2(2 - zeta(2))n(n - 1)/d, while those of the dissipation field are mu(n) = -2(2 - zeta(2))n(n - 1)/d for orders n << d. The refined similarity hypothesis zeta(2n) = n zeta(2) + mu(n) is thus established by a straightforward calculation for the case considered.
引用
收藏
页码:2706 / 2709
页数:4
相关论文
共 18 条
  • [1] TEMPERATURE STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS
    ANTONIA, RA
    HOPFINGER, EJ
    GAGNE, Y
    ANSELMET, F
    [J]. PHYSICAL REVIEW A, 1984, 30 (05): : 2704 - 2707
  • [2] CHERTKOV M, 1995, PHYS REV E, V52, P4294
  • [3] EYINK G, 1993, PHYS LETT A, V72, P355
  • [4] FAIRHALL AL, IN PRESS PHYS REV E
  • [5] GAWEDZKI K, 1995, PHYS REV LETT, V75, P3834, DOI 10.1103/PhysRevLett.75.3834
  • [6] OPERATOR ALGEBRA AND DETERMINATION OF CRITICAL INDICES
    KADANOFF, LP
    [J]. PHYSICAL REVIEW LETTERS, 1969, 23 (25) : 1430 - &
  • [7] KOLMOGOROV AN, 1962, J FLUID MECH, V12, P82
  • [8] KRAICHNAN R, COMMUNICATION
  • [9] SCALING RELATIONS FOR A RANDOMLY ADVECTED PASSIVE SCALAR FIELD
    KRAICHNAN, RH
    YAKHOT, V
    CHEN, SY
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (02) : 240 - 243
  • [10] SMALL-SCALE STRUCTURE OF A SCALAR FIELD CONVECTED BY TURBULENCE
    KRAICHNAN, RH
    [J]. PHYSICS OF FLUIDS, 1968, 11 (05) : 945 - +