A random graph model for power law graphs

被引:222
作者
Aiello, W
Chung, F
Lu, LY
机构
[1] AT&T Labs Res, Florham Pk, NJ 07932 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
D O I
10.1080/10586458.2001.10504428
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a random graph model which is a special case of sparse random graphs with given degree sequences which satisfy a power law. This model involves only a small number of parameters, called logsize and log-log growth rate. These parameters capture some universal characteristics of massive graphs. From these parameters, various properties of the graph can be derived. For example, for certain ranges of the parameters, we will compute the expected distribution of the sizes of the connected components which almost surely occur with high probability. We illustrate the consistency of our model with the behavior of some massive graphs derived from data in telecommunications. We also discuss the threshold function, the giant component, and the evolution of random graphs in this model.
引用
收藏
页码:53 / 66
页数:14
相关论文
共 20 条
[1]  
ABELLO J, 1998, LECT NOTES COMPUTER, V1461, P332
[2]  
Aiello W., 2000, Proceedings of the Thirty Second Annual ACM Symposium on Theory of Computing, P171, DOI 10.1145/335305.335326
[3]  
AIELLO W, 2001, IN PRESS HDB MASSIVE, V2
[4]   Internet -: Diameter of the World-Wide Web [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 1999, 401 (6749) :130-131
[5]  
ALON N, 1992, PROBABILISTIC METHOD
[6]  
[Anonymous], 1992, P S RANDOM GRAPHS PO
[7]  
[Anonymous], 1960, MAGYAR TUD AKAD MAT
[8]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[9]  
BARABASI AL, 2000, PHYSICA A, V281
[10]  
Erdos P., 1961, ACTA MATH ACAD SCI H, V12, P261, DOI DOI 10.1007/BF02066689