Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves

被引:366
作者
Wu, P
Ma, LG
Hou, XL
Wang, MY
Wu, YR
Liu, FY
Deng, XW [1 ]
机构
[1] Peking Univ, Coll Life Sci, Peking Yale Joint Ctr Plant Mol Genet & Agrobiote, Beijing 100871, Peoples R China
[2] Zhejiang Univ, Coll Life Sci, State Key Lab Plant Physiol & Biochem, Hangzhou 310029, Peoples R China
[3] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
关键词
D O I
10.1104/pp.103.021022
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis genome expression pattern changes in response to phosphate (Pi) starvation were examined during a 3-d period after removal of Pi from the growth medium. Available Pi concentration was decreased after the first 24 h of Pi starvation in roots by about 22%, followed by a slow recovery during the 2nd and 3rd d after Pi starvation, but no significant change was observed in leaves within the 3 d of Pi starvation. Microarray analysis revealed that more than 1,800 of the 6,172 genes present in the array were regulated by 2-fold or more within 72 h from the onset of Pi starvation. Analysis of these Pi starvation-responsive genes shows that they belong to wide range of functional categories. Many genes for photosynthesis and nitrogen assimilation were down-regulated. A complex set of metabolic adaptations appears to occur during Pi starvation. More than 100 genes each for transcription factors and cell-signaling proteins were regulated in response to Pi starvation, implying major regulatory changes in cellular growth and development. A significant fraction of those regulatory genes exhibited distinct or even contrasting expression in leaves and roots in response to Pi starvation, supporting the idea that distinct Pi starvation response strategies are used for different plant organs in response to a shortage of Pi in the growth medium.
引用
收藏
页码:1260 / 1271
页数:12
相关论文
共 49 条
[1]   Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells [J].
Abel, S ;
Nürnberger, T ;
Ahnert, V ;
Krauss, GJ ;
Glund, K .
PLANT PHYSIOLOGY, 2000, 122 (02) :543-552
[2]   Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability [J].
Bates, TR ;
Lynch, JP .
PLANT CELL AND ENVIRONMENT, 1996, 19 (05) :529-538
[3]   THE YEAST REGULATORY GENE PHO4 ENCODES A HELIX-LOOP-HELIX MOTIF [J].
BERBEN, G ;
LEGRAIN, M ;
GILLIQUET, V ;
HILGER, F .
YEAST, 1990, 6 (05) :451-454
[4]   The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots [J].
Burleigh, SH ;
Harrison, MJ .
PLANT PHYSIOLOGY, 1999, 119 (01) :241-248
[5]   Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana [J].
Chen, DL ;
Delatorre, CA ;
Bakker, A ;
Abel, S .
PLANTA, 2000, 211 (01) :13-22
[6]   A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants [J].
Chico, JM ;
Raíces, M ;
Téllez-Iñón, MT ;
Ulloa, RM .
PLANT PHYSIOLOGY, 2002, 128 (01) :256-270
[7]   A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions [J].
del Pozo, JC ;
Allona, I ;
Rubio, V ;
Leyva, A ;
de la Peña, A ;
Aragoncillo, C ;
Paz-Ares, J .
PLANT JOURNAL, 1999, 19 (05) :579-589
[8]   COP1, AN ARABIDOPSIS REGULATORY GENE, ENCODES A PROTEIN WITH BOTH A ZINC-BINDING MOTIF AND A G-BETA HOMOLOGOUS DOMAIN [J].
DENG, XW ;
MATSUI, M ;
WEI, N ;
WAGNER, D ;
CHU, AM ;
FELDMANN, KA ;
QUAIL, PH .
CELL, 1992, 71 (05) :791-801
[9]   Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana [J].
Dong, B ;
Rengel, Z ;
Delhaize, E .
PLANTA, 1998, 205 (02) :251-256
[10]   PHOSPHATE STARVATION INDUCIBLE BYPASSES OF ADENYLATE AND PHOSPHATE DEPENDENT GLYCOLYTIC-ENZYMES IN BRASSICA-NIGRA SUSPENSION CELLS [J].
DUFF, SMG ;
MOORHEAD, GBG ;
LEFEBVRE, DD ;
PLAXTON, WC .
PLANT PHYSIOLOGY, 1989, 90 (04) :1275-1278