The influence of CO2,C3H6,NO, H2, H2O or SO2 on the low-temperature oxidation of CO on a cobalt-aluminate spinel catalyst (Co1.66Al1.34O4)

被引:49
作者
Thormählen, P [1 ]
Fridell, E
Cruise, N
Skoglundh, M
Palmqvist, A
机构
[1] Chalmers Univ Technol, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, Dept Appl Phys, SE-41296 Gothenburg, Sweden
[3] Chalmers Univ Technol, Dept Chem React Engn, SE-41296 Gothenburg, Sweden
[4] Chalmers Univ Technol, Dept Appl Surface Chem, SE-41296 Gothenburg, Sweden
关键词
catalytic oxidation of carbon monoxide; low-temperature activity; cold start emissions; catalyst pre-treatment; CO-TPD; BET; SEM; XRD; XPS; cobalt-aluminate; CO; CO2; H-2; C2H6; NOx; H2O; SO2;
D O I
10.1016/S0926-3373(00)00267-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A preparation method for making a high temperature stable monolith catalyst, using a cobalt-rich cobalt-aluminate spinel (Co1.66Al1.34O4) as the active material, is proposed. This catalyst, which is known for being active for CO oxidation at low temperatures, was prepared and characterised by BET, SEM, XRD, XPS and CO-TPD. The catalyst was tested for its capacity to oxidise carbon monoxide using oxygen only and oxygen in combination with other compounds typically present in cold start exhausts from Otto engines, i.e. CO2, C3H6. NO, H-2, H2O or SO2. When the catalytic activity was tested with only CO and O-2 present in the feed gas, complete conversion was reached at room temperature. When other compounds were present in the gas mixture, they inhibited the CO oxidation to various degrees. The degree of inhibition for the compounds investigated was found to be: SO2 > H2O > NO = C3H6 > H-2 > CO2. The main reason for the loss of activity is suggested to origin from the compounds adsorption and formation of different species on the cobalt oxide surface, which seems to inhibit the reduction and/or re-oxidation process of the metal oxide surface and/or the adsorption of CO. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 25 条
[1]  
[Anonymous], HDB HETEROGENEOUS CA
[2]   Effects of thiophene and sulfur dioxide on CO adsorption on cobalt/silica catalysts [J].
Bailie, JE ;
Rochester, CH ;
Hutchings, GJ .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1997, 93 (13) :2331-2336
[3]   Formation of nickel, cobalt, copper, and iron aluminates from α- and γ-alumina-supported oxides:: A comparative study [J].
Bolt, PH ;
Habraken, FHPM ;
Geus, JW .
JOURNAL OF SOLID STATE CHEMISTRY, 1998, 135 (01) :59-69
[4]   FOURIER-TRANSFORM INFRARED STUDY OF THE SURFACE-PROPERTIES OF COBALT OXIDES [J].
BUSCA, G ;
GUIDETTI, R ;
LORENZELLI, V .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1990, 86 (06) :989-994
[5]   INTERPRETATION OF X-RAY PHOTOEMISSION SPECTRA OF COBALT OXIDES AND COBALT OXIDE SURFACES [J].
CHUANG, TJ ;
BRUNDLE, CR ;
RICE, DW .
SURFACE SCIENCE, 1976, 59 (02) :413-429
[6]   INFLUENCE OF DRY OPERATING-CONDITIONS - OBSERVATION OF OSCILLATIONS AND LOW-TEMPERATURE CO OXIDATION OVER CO3O4 AND AU/CO3O4 CATALYSTS [J].
CUNNINGHAM, DAH ;
KOBAYASHI, T ;
KAMIJO, N ;
HARUTA, M .
CATALYSIS LETTERS, 1994, 25 (3-4) :257-264
[7]   Surface characterization study of Au/alpha-Fe2O3 and Au/Co3O4 low-temperature CO oxidation catalysts [J].
Epling, WS ;
Hoflund, GB ;
Weaver, JF ;
Tsubota, S ;
Haruta, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (23) :9929-9934
[8]  
Erkfeldt S, 1999, STUD SURF SCI CATAL, V126, P211
[9]   NOx storage in barium-containing catalysts [J].
Fridell, E ;
Skoglundh, M ;
Westerberg, B ;
Johansson, S ;
Smedler, G .
JOURNAL OF CATALYSIS, 1999, 183 (02) :196-209
[10]  
Fridell E, 1998, STUD SURF SCI CATAL, V116, P537