Heat effects in ZLC experiments

被引:32
作者
Brandani, S
Cavalcante, CL
Guimaraes, A
Ruthven, D
机构
[1] UCL, Dept Chem Engn, London NC1E 7JE, England
[2] Univ Fed Ceara, Dept Chem Engn, Fortaleza, Ceara, Brazil
[3] Univ Maine, Dept Chem Engn, Orono, ME 04469 USA
来源
ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY | 1998年 / 4卷 / 3-4期
关键词
diffusion zeolite; ZLC; heat effects;
D O I
10.1023/A:1008837801299
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The problem of nonisothermal desorption in a zero length column (ZLC) experiment is considered theoretically. Simple analytical expressions for the ZLC desorption curve are derived for certain limiting situations in which the governing equations reduce to a linear form. More general numerical solutions are calculated for a wide range of experimental conditions assuming both negligible mass transfer resistance and finite mass transfer resistance controlled by intraparticle diffusion. A simple criterion for negligible thermal effects is developed. It is shown that when the ZLC technique is applied to the measurement of diffusion in unaggregated zeolite crystals, as originally intended, heat effects are generally insignificant. However, when applied to the measurement of macropore diffusion in relatively large adsorbent particles heat effects can become important and may cause major modification of both the desorption rate and the shape of the desorption curve. A recent experimental ZLC study carried out with commercial adsorbent particles, under conditions of macropore diffusion control, showed an anomalous dependence of the desorption rate on both temperature and particle size. These effects can be qualitatively explained by the nonisothermal model. A more precise quantitative representation of these experiments will require a more refined model incorporating a nonlinear equilibrium isotherm as well as intraparticle diffusional resistance.
引用
收藏
页码:275 / 285
页数:11
相关论文
共 6 条
[1]   Transport diffusion and self-diffusion of benzene in NaX and CaX zeolite crystals studied by ZLC and tracer ZLC methods [J].
Brandani, S ;
Xu, Z ;
Ruthven, D .
MICROPOROUS MATERIALS, 1996, 7 (06) :323-331
[2]   A NEW EXPERIMENTAL-TECHNIQUE FOR MEASUREMENT OF INTRACRYSTALLINE DIFFUSIVITY [J].
EIC, M ;
RUTHVEN, DM .
ZEOLITES, 1988, 8 (01) :40-45
[3]  
GUIMARAES A, 1997, THESIS U RIO JANEIRO
[4]  
HUFTON JR, 1994, ZEOLITES RELATED MIC, P1323
[5]  
Karger J., 1992, DIFFUSION ZEOLITES O, P328
[6]   DIFFUSION OF OXYGEN AND NITROGEN IN 5A ZEOLITE CRYSTALS AND COMMERCIAL 5A PELLETS [J].
RUTHVEN, DM ;
XU, Z .
CHEMICAL ENGINEERING SCIENCE, 1993, 48 (18) :3307-3312