Uncover disease genes by maximizing information flow in the phenome-interactome network

被引:68
作者
Chen, Yong [1 ,2 ,3 ,4 ]
Jiang, Tao [1 ,2 ,5 ]
Jiang, Rui [1 ,2 ]
机构
[1] Tsinghua Univ, TNLIST Dept Automat, MOE Key Lab Bioinformat, Beijing 1000084, Peoples R China
[2] Tsinghua Univ, TNLIST Dept Automat, Bioinformat Div, Beijing 1000084, Peoples R China
[3] Chinese Acad Sci, Inst Biophys, Beijing 100101, Peoples R China
[4] Univ Jinan, Sch Sci, Jinan 250022, Peoples R China
[5] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
关键词
CANDIDATE GENES; PRIORITIZATION; IDENTIFICATION; ASSOCIATION; PREDICTION; DRIVERS; TARGETS; WALKING; BREAST; MITF;
D O I
10.1093/bioinformatics/btr213
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Pinpointing genes that underlie human inherited diseases among candidate genes in susceptibility genetic regions is the primary step towards the understanding of pathogenesis of diseases. Although several probabilistic models have been proposed to prioritize candidate genes using phenotype similarities and protein-protein interactions, no combinatorial approaches have been proposed in the literature. Results: We propose the first combinatorial approach for prioritizing candidate genes. We first construct a phenome-interactome network by integrating the given phenotype similarity profile, protein-protein interaction network and associations between diseases and genes. Then, we introduce a computational method called MAXIF to maximize the information flow in this network for uncovering genes that underlie diseases. We demonstrate the effectiveness of this method in prioritizing candidate genes through a series of cross-validation experiments, and we show the possibility of using this method to identify diseases with which a query gene may be associated. We demonstrate the competitive performance of our method through a comparison with two existing state-of-the-art methods, and we analyze the robustness of our method with respect to the parameters involved. As an example application, we apply our method to predict driver genes in 50 copy number aberration regions of melanoma. Our method is not only able to identify several driver genes that have been reported in the literature, it also shed some new biological insights on the understanding of the modular property and transcriptional regulation scheme of these driver genes.
引用
收藏
页码:I167 / I176
页数:10
相关论文
共 54 条
[1]   Speeding disease gene discovery by sequence based candidate prioritization [J].
Adie, EA ;
Adams, RR ;
Evans, KL ;
Porteous, DJ ;
Pickard, BS .
BMC BIOINFORMATICS, 2005, 6 (1)
[2]   Gene prioritization through genomic data fusion [J].
Aerts, S ;
Lambrechts, D ;
Maity, S ;
Van Loo, P ;
Coessens, B ;
De Smet, F ;
Tranchevent, LC ;
De Moor, B ;
Marynen, P ;
Hassan, B ;
Carmeliet, P ;
Moreau, Y .
NATURE BIOTECHNOLOGY, 2006, 24 (05) :537-544
[3]   An Integrated Approach to Uncover Drivers of Cancer [J].
Akavia, Uri David ;
Litvin, Oren ;
Kim, Jessica ;
Sanchez-Garcia, Felix ;
Kotliar, Dylan ;
Causton, Helen C. ;
Pochanard, Panisa ;
Mozes, Eyal ;
Garraway, Levi A. ;
Pe'er, Dana .
CELL, 2010, 143 (06) :1005-1017
[4]   Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease [J].
Botstein, D ;
Risch, N .
NATURE GENETICS, 2003, 33 (Suppl 3) :228-237
[5]   Microphthalmia-associated transcription factor regulates RAB27A gene expression and controls melanosome transport [J].
Chiaverini, Christine ;
Beuret, Laurent ;
Flori, Enrica ;
Busca, Roser ;
Abbe, Patricia ;
Bille, Karine ;
Bahadoran, Philippe ;
Ortonne, Jean-Paul ;
Bertolotto, Corine ;
Ballotti, Robert .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (18) :12635-12642
[6]   Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls [J].
Craddock, Nick ;
Hurles, Matthew E. ;
Cardin, Niall ;
Pearson, Richard D. ;
Plagnol, Vincent ;
Robson, Samuel ;
Vukcevic, Damjan ;
Barnes, Chris ;
Conrad, Donald F. ;
Giannoulatou, Eleni ;
Holmes, Chris ;
Marchini, Jonathan L. ;
Stirrups, Kathy ;
Tobin, Martin D. ;
Wain, Louise V. ;
Yau, Chris ;
Aerts, Jan ;
Ahmad, Tariq ;
Andrews, T. Daniel ;
Arbury, Hazel ;
Attwood, Anthony ;
Auton, Adam ;
Ball, Stephen G. ;
Balmforth, Anthony J. ;
Barrett, Jeffrey C. ;
Barroso, Ines ;
Barton, Anne ;
Bennett, Amanda J. ;
Bhaskar, Sanjeev ;
Blaszczyk, Katarzyna ;
Bowes, John ;
Brand, Oliver J. ;
Braund, Peter S. ;
Bredin, Francesca ;
Breen, Gerome ;
Brown, Morris J. ;
Bruce, Ian N. ;
Bull, Jaswinder ;
Burren, Oliver S. ;
Burton, John ;
Byrnes, Jake ;
Caesar, Sian ;
Clee, Chris M. ;
Coffey, Alison J. ;
Connell, John M. C. ;
Cooper, Jason D. ;
Dominiczak, Anna F. ;
Downes, Kate ;
Drummond, Hazel E. ;
Dudakia, Darshna .
NATURE, 2010, 464 (7289) :713-U86
[7]   Identifying disease-specific genes based on their topological significance in protein networks [J].
Dezso, Zoltan ;
Nikolsky, Yuri ;
Nikolskaya, Tatiana ;
Miller, Jeremy ;
Cherba, David ;
Webb, Craig ;
Bugrim, Andrej .
BMC SYSTEMS BIOLOGY, 2009, 3
[8]   Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes [J].
Franke, Lude ;
van Bakel, Harm ;
Fokkens, Like ;
de Jong, Edwin D. ;
Egmont-Petersen, Michael ;
Wijmenga, Cisca .
AMERICAN JOURNAL OF HUMAN GENETICS, 2006, 78 (06) :1011-1025
[9]   A similarity-based method for genome-wide prediction of disease-relevant human genes [J].
Freudenberg, J ;
Propping, P .
BIOINFORMATICS, 2002, 18 :S110-S115
[10]   A computational system to select candidate genes for complex human traits [J].
Gaulton, Kyle J. ;
Mohlke, Karen L. ;
Vision, Todd J. .
BIOINFORMATICS, 2007, 23 (09) :1132-1140