A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis

被引:143
作者
Wheeler, MCG
Tronconi, MA
Drincovich, MF
Andreo, CS [1 ]
Flügge, UI
Maurino, VG
机构
[1] Univ Nacl Rosario, Ctr Estudios Fotosinteticos & Bioquim, RA-2000 Rosario, Argentina
[2] Univ Cologne, Inst Bot, D-50931 Cologne, Germany
关键词
D O I
10.1104/pp.105.065953
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Arabidopsis ( Arabidopsis thaliana) genome contains four genes encoding putative NADP-malic enzymes (MEs; AtNADP-ME1-ME4). NADP-ME4 is localized to plastids, whereas the other three isoforms do not possess any predicted organellar targeting sequence and are therefore expected to be cytosolic. The plant NADP-MEs can be classified into four groups: groups I and II comprising cytosolic and plastidic isoforms from dicots, respectively; group III containing isoforms from monocots; and group IV composed of both monocots and dicots, including AtNADP-ME1. AtNADP-MEs contained all conserved motifs common to plant NADP-MEs and the recombinant isozymes showed different kinetic and structural properties. NADP-ME2 exhibits the highest specific activity, while NADP-ME3 and NADP-ME4 present the highest catalytic efficiency for NADP and malate, respectively. NADP-ME4 exists in equilibrium of active dimers and tetramers, while the cytosolic counterparts are present as hexamers or octamers. Characterization of T-DNA insertion mutant and promoter activity studies indicates that NADP-ME2 is responsible for the major part of NADP-ME activity in mature tissues of Arabidopsis. Whereas NADP-ME2 and -ME4 are constitutively expressed, the expression of NADP-ME1 and NADP-ME3 is restricted by both developmental and cell-specific signals. These isoforms may play specific roles at particular developmental stages of the plant rather than being involved in primary metabolism.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 52 条
[1]   NAD-MALIC ENZYME FROM PLANTS [J].
ARTUS, NN ;
EDWARDS, GE .
FEBS LETTERS, 1985, 182 (02) :225-233
[2]  
Bechtold N, 1998, METH MOL B, V82, P259
[3]   PRIMARY STRUCTURE OF NADP-DEPENDENT MALIC ENZYME IN THE DICOTYLEDONOUS-C4 PLANT FLAVERIA-TRINERVIA [J].
BORSCH, D ;
WESTHOFF, P .
FEBS LETTERS, 1990, 273 (1-2) :111-115
[4]   Malate metabolism by NADP-malic enzyme in plant defense [J].
Casati, P ;
Drincovich, MF ;
Edwards, GE ;
Andreo, CS .
PHOTOSYNTHESIS RESEARCH, 1999, 61 (02) :99-105
[5]   Structure and function of malic enzymes, a new class of oxidative decarboxylases [J].
Chang, GG ;
Tong, L .
BIOCHEMISTRY, 2003, 42 (44) :12721-12733
[6]   Crystal structure of the malic enzyme from Ascaris suum complexed with nicotinamide adenine dinucleotide at 2.3 Å resolution [J].
Coleman, DE ;
Rao, GSJ ;
Goldsmith, EJ ;
Cook, PF ;
Harris, BG .
BIOCHEMISTRY, 2002, 41 (22) :6928-6938
[7]   CHARACTERIZATION AND EXPRESSION OF A NADP-MALIC ENZYME CDNA INDUCED BY SALT STRESS FROM THE FACULTATIVE CRASSULACEAN ACID METABOLISM PLANT, MESEMBRYANTHEMUM-CRYSTALLINUM [J].
CUSHMAN, JC .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 208 (02) :259-266
[8]   Maize C4NADP-malic enzyme -: Expression in Escherichia coli and characterization of site-directed mutants at the putative nucleotide-binding sites [J].
Detarsio, E ;
Wheeler, MCG ;
Bermúdez, VAC ;
Andreo, CS ;
Drincovich, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (16) :13757-13764
[9]   NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways [J].
Drincovich, MF ;
Casati, P ;
Andreo, CS .
FEBS LETTERS, 2001, 490 (1-2) :1-6
[10]   Evidence that a malate inorganic phosphate exchange translocator imports carbon across the leucoplast envelope for fatty acid synthesis in developing castor seed endosperm [J].
Eastmond, PJ ;
Dennis, DT ;
Rawsthorne, S .
PLANT PHYSIOLOGY, 1997, 114 (03) :851-856