Mitotic mechanisms in Alzheimer's disease?

被引:345
作者
Vincent, I
Rosado, M
Davies, P
机构
[1] YESHIVA UNIV ALBERT EINSTEIN COLL MED,DEPT PATHOL,BRONX,NY 10461
[2] YESHIVA UNIV ALBERT EINSTEIN COLL MED,DEPT NEUROSCI,BRONX,NY 10461
关键词
D O I
10.1083/jcb.132.3.413
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The mechanism(s) leading to widespread hyper-phosphorylation of proteins in Alzheimer's disease (AD) are unknown. We have characterized seven new monoclonal antibodies recognizing independent phospho-epitopes in the paired helical filament proteins (PHF) found in AD brain. These antibodies show pronounced immunoreactivity with cultured human neuroblastoma cells that are in the M phase of cell division, but have no discernible reactivity with interphase cells. Immunoreactivity with these antibodies does not localize to the microtubule spindles or chromosomes in M phase, but is confined to the surrounding cytoplasm. Similar staining in M phase is observed with cultured cells of various tissue types and species. Cells arrested in M phase with the microtubule depolymerizing agent, nocodazole, show marked increases in immunoreactivity with the antibodies by immunofluorescence staining, ELISA, and immunoblotting. In neuroblastoma cells, the appearance of the TG/MC phospho-epitopes coincides with activation of mitotic protein kinases, but not with the activity of the neuronal specific cyclin-dependent kinase, cdk5. These data suggest that the TG/MC epitopes are conserved mitotic phospho-epitopes produced as a result of increased mitotic kinase activity. To investigate this possibility in AD, we examined the staining of human brain tissue with MPM-2, a marker antibody for mitotic phospho-epitopes. It was found that MPM-2 reacts strongly with neurofibrillary tangles, neuritic processes, and neurons in AD but has no staining in normal human brain. Our data suggest that accumulation of phospho-epitopes in AD may result from activation of mitotic posttranslational mechanisms which do not normally operate in mature neurons of brain.
引用
收藏
页码:413 / 425
页数:13
相关论文
共 77 条
[1]  
AZZI L, 1994, J BIOL CHEM, V269, P13279
[2]  
BAUDIER J, 1987, J BIOL CHEM, V262, P17577
[3]   ABNORMAL ALZHEIMER-LIKE PHOSPHORYLATION OF TAU-PROTEIN BY CYCLIN-DEPENDENT KINASES CDK2 AND CDK5 [J].
BAUMANN, K ;
MANDELKOW, EM ;
BIERNAT, J ;
PIWNICAWORMS, H ;
MANDELKOW, E .
FEBS LETTERS, 1993, 336 (03) :417-424
[4]   P13SUC1 ACTS IN THE FISSION YEAST-CELL DIVISION CYCLE AS A COMPONENT OF THE P34CDC2 PROTEIN-KINASE [J].
BRIZUELA, L ;
DRAETTA, G ;
BEACH, D .
EMBO JOURNAL, 1987, 6 (11) :3507-3514
[5]  
DAVIS FM, 1983, P NATL ACAD SCI-BIOL, V80, P2926, DOI 10.1073/pnas.80.10.2926
[6]  
DICKSON DW, 1995, AM J PATHOL, V146, P1040
[7]   IDENTIFICATION OF P34 AND P13, HUMAN HOMOLOGS OF THE CELL-CYCLE REGULATORS OF FISSION YEAST ENCODED BY CDC2+ AND SUC1+ [J].
DRAETTA, G ;
BRIZUELA, L ;
POTASHKIN, J ;
BEACH, D .
CELL, 1987, 50 (02) :319-325
[8]   ACTIVATION OF CDC2 PROTEIN-KINASE DURING MITOSIS IN HUMAN-CELLS - CELL-CYCLE DEPENDENT PHOSPHORYLATION AND SUBUNIT REARRANGEMENT [J].
DRAETTA, G ;
BEACH, D .
CELL, 1988, 54 (01) :17-26
[9]   MODULATION OF THE DYNAMIC INSTABILITY OF TUBULIN ASSEMBLY BY THE MICROTUBULE-ASSOCIATED PROTEIN TAU [J].
DRECHSEL, DN ;
HYMAN, AA ;
COBB, MH ;
KIRSCHNER, MW .
MOLECULAR BIOLOGY OF THE CELL, 1992, 3 (10) :1141-1154
[10]   MITOGEN ACTIVATED PROTEIN (MAP) KINASE TRANSFORMS TAU-PROTEIN INTO AN ALZHEIMER-LIKE STATE [J].
DREWES, G ;
LICHTENBERGKRAAG, B ;
DORING, F ;
MANDELKOW, EM ;
BIERNAT, J ;
GORIS, J ;
DOREE, M ;
MANDELKOW, E .
EMBO JOURNAL, 1992, 11 (06) :2131-2138