On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption

被引:255
作者
Fan, JY [1 ]
Yuan, YX [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China
关键词
nonlinear equations; Levenberg-Marquardt method; quadratic convergence;
D O I
10.1007/s00607-004-0083-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, Yamashita and Fukushima [11] established an interesting quadratic convergence result for the Levenberg-Marquardt method without the nonsingularity assumption. This paper extends the result of Yamashita and Fukushima by using mu(k)=parallel toF(x(k))parallel to(delta) where delta is an element of [1,2], instead of mu(k)=parallel toF(x(k))parallel to(2) as the Levenberg-Marquardt parameter. If parallel toF(x)parallel to provides a local error bound for the system of nonlinear equations F(x)=0, it is shown that the sequence {x(k)} generated by the new method converges to a solution quadratically, which is stronger than dist(x(k),X*) --> 0 given by Yamashita and Fukushima. Numerical results show that the method performs well for singular problems.
引用
收藏
页码:23 / 39
页数:17
相关论文
共 14 条
[1]  
[Anonymous], 2001, COMPUTING SUPPLEMENT, DOI DOI 10.1007/978-3-7091-6217-0
[2]  
[Anonymous], ICM99
[3]  
[Anonymous], INFORMATION
[4]  
[Anonymous], 1998, ADV NONLINEAR PROGRA, DOI DOI 10.1007/978-1-4613-3335-7_7
[5]  
KELLEY C, 1999, FRONTIERS APPL MATH, P18
[6]  
Levenberg K., 1944, Quart. Appl. Math, V2, P164, DOI [10.1090/QAM/10666, DOI 10.1090/QAM/10666]
[7]  
MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P441
[8]  
More J. J., 1978, Proceedings of the Biennial Conference on numerical analysis, P105
[9]  
More J.J., 1983, MATH PROGRAMMING STA, P258
[10]  
MORE JJ, 1981, ACM T MATH SOFTWARE, V7, P17, DOI 10.1145/355934.355936