On the deformation of Abelian integrals

被引:17
作者
Smirnov, FA [1 ]
机构
[1] VA STEKLOV MATH INST,ST PETERSBURG 191011,RUSSIA
关键词
integrable models; q-deformation; form factors;
D O I
10.1007/BF00943279
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the deformation of Abelian integrals which arose from the study of Sine-Gordon form factors. Besides the known properties, the deformed integrals are shown to satisfy Riemann bilinear identity. The deformation of the intersection number of cycles on a hyperelliptic curve is introduced.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 5 条
[1]   SMIRNOV INTEGRALS AND THE QUANTUM KNIZHNIK-ZAMOLODCHIKOV EQUATION OF LEVEL-0 [J].
JIMBO, M ;
KOJIMA, T ;
MIWA, T ;
QUANO, YH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (09) :3267-3283
[2]  
Smirnov F., 1992, ADV SERIES MATH PHYS, V14
[3]   DYNAMIC SYMMETRIES OF MASSIVE INTEGRABLE MODELS .1. FORM-FACTOR BOOTSTRAP EQUATIONS AS A SPECIAL CASE OF DEFORMED KNIZHNIK-ZAMOLODCHIKOV EQUATIONS [J].
SMIRNOV, FA .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 :813-837
[4]   A GENERAL FORMULA FOR SOLITION FORM-FACTORS IN THE QUANTUM SINE-GORDON MODEL [J].
SMIRNOV, FA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (10) :L575-L578
[5]   FORM-FACTORS, DEFORMED KNIZHNIK-ZAMOLODCHIKOV EQUATIONS AND FINITE-GAP INTEGRATION [J].
SMIRNOV, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (03) :459-487