NMR techniques for quantum control and computation

被引:910
作者
Vandersypen, LMK [1 ]
Chuang, IL
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[2] MIT, Ctr Bits & Atoms, Cambridge, MA 02139 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
D O I
10.1103/RevModPhys.76.1037
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fifty years of developments in nuclear magnetic resonance (NMR) have resulted in an unrivaled degree of control of the dynamics of coupled two-level quantum systems. This coherent control of nuclear spin dynamics has recently been taken to a new level, motivated by the interest in quantum information processing. NMR has been the workhorse for the experimental implementation of quantum protocols, allowing exquisite control of systems up to seven qubits in size. This article surveys and summarizes a broad variety of pulse control and tomographic techniques which have been developed for, and used in, NMR quantum computation. Many of these will be useful in other quantum systems now being considered for the implementation of quantum information processing tasks.
引用
收藏
页码:1037 / 1069
页数:33
相关论文
共 125 条
[1]   DERIVATION OF BROAD-BAND AND NARROW-BAND EXCITATION PULSES USING THE FLOQUET FORMALISM [J].
ABRAMOVICH, D ;
VEGA, S .
JOURNAL OF MAGNETIC RESONANCE SERIES A, 1993, 105 (01) :30-48
[2]  
Aharonov D., 1997, P 29 ANN ACM S THEOR, P176, DOI DOI 10.1145/258533.258579
[3]   Ancilla-assisted quantum process tomography [J].
Altepeter, JB ;
Branning, D ;
Jeffrey, E ;
Wei, TC ;
Kwiat, PG ;
Thew, RT ;
O'Brien, JL ;
Nielsen, MA ;
White, AG .
PHYSICAL REVIEW LETTERS, 2003, 90 (19) :4
[4]   Three component spin echo generation by radiation damping [J].
Augustine, MP ;
Hahn, EL .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08) :3324-3328
[5]   GAUSSIAN PULSES [J].
BAUER, C ;
FREEMAN, R ;
FRENKIEL, T ;
KEELER, J ;
SHAKA, AJ .
JOURNAL OF MAGNETIC RESONANCE, 1984, 58 (03) :442-457
[6]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[8]   Magnetic resonance for nonrotating fields [J].
Bloch, F ;
Siegert, A .
PHYSICAL REVIEW, 1940, 57 (06) :522-527
[9]   Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points [J].
Boulant, N ;
Havel, TF ;
Pravia, MA ;
Cory, DG .
PHYSICAL REVIEW A, 2003, 67 (04) :12
[10]   Fidelity of single qubit maps [J].
Bowdrey, MD ;
Oi, DKL ;
Short, AJ ;
Banaszek, K ;
Jones, JA .
PHYSICS LETTERS A, 2002, 294 (5-6) :258-260