Bell-Kochen-Specker theorem for any finite dimension n>=3

被引:36
作者
Cabello, A
GarciaAlcaine, G
机构
[1] Departamento de Física Teórica, Universidad Complutense
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 05期
关键词
D O I
10.1088/0305-4470/29/5/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Bell-Kochen-Specker theorem against non-contextual hidden variables can be proved by constructing a finite set of 'totally non-colourable' directions, as Kochen and specker did in a Hilbert space of dimension n = 3. We generalize Kochen and Specker's set to Hilbert spaces of any finite dimension n greater than or equal to 3, in a three-step process that shows the relationship between different kinds of proofs ('continuum', 'probabilistic', 'state-specific' and 'state-independent') of the Bell-Kochen-specker theorem. At the same time, this construction of a totally noncolourable set of directions in any dimension explicitly solves the question raised by Zimba and Penrose about the existence of such a set for n = 5.
引用
收藏
页码:1025 / 1036
页数:12
相关论文
共 45 条
[1]  
BELINFANTE FJ, 1973, SURVEY HIDDEN VARIAB, P63
[2]   ON PROBLEM OF HIDDEN VARIABLES IN QUANTUM MECHANICS [J].
BELL, JS .
REVIEWS OF MODERN PHYSICS, 1966, 38 (03) :447-&
[3]  
BROWN HR, 1993, BELLS THEOREM F MODE, P104
[4]   Simple proof of the Kochen. Specker theorem [J].
Cabello, A. .
European Journal of Physics, 1994, 15 (04)
[5]  
Cabello A, 1995, FUND THEOR, V73, P43
[6]   A HIDDEN-VARIABLES VERSUS QUANTUM-MECHANICS EXPERIMENT [J].
CABELLO, A ;
GARCIAALCAINE, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (13) :3719-3724
[7]  
CABELLO A, 1995, UNPUB
[8]   THE KOCHEN-SPECKER THEOREM AND BELLS THEOREM - AN ALGEBRAIC APPROACH [J].
CERECEDA, JL .
FOUNDATIONS OF PHYSICS, 1995, 25 (06) :925-949
[9]   GETTING CONTEXTUAL AND NONLOCAL ELEMENTS-OF-REALITY THE EASY WAY [J].
CLIFTON, R .
AMERICAN JOURNAL OF PHYSICS, 1993, 61 (05) :443-447
[10]   LOCALITY, LORENTZ INVARIANCE, AND LINEAR ALGEBRA - HARDY THEOREM FOR 2 ENTANGLED SPIN-S PARTICLES [J].
CLIFTON, R ;
NIEMANN, P .
PHYSICS LETTERS A, 1992, 166 (3-4) :177-184