Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function

被引:305
作者
Elston, GN [1 ]
机构
[1] Univ Queensland, Sch Biomed Sci, Dept Physiol & Pharmacol, Vis Touch & Hearing Res Ctr, Brisbane, Qld 4072, Australia
基金
英国医学研究理事会;
关键词
D O I
10.1093/cercor/bhg093
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Arguably the most complex conical functions are seated in human cognition, the how and why of which have been debated for centuries by theologians, philosophers and scientists alike. In his best-selling book, An Astonishing Hypothesis: A Scientific Search for the Soul, Francis Crick refined the view that these qualities are determined solely by cortical cells and circuitry. Put simply, cognition is nothing more, or less, than a biological function. Accepting this to be the case, it should be possible to identify the mechanisms that subserve cognitive processing. Since the pioneering studies of Lorent de No and Hebb, and the more recent studies of Fuster, Miller and Goldman-Rakic, to mention but a few, much attention has been focused on the role of persistent neural activity in cognitive processes. Application of modern technologies and modelling techniques has led to new hypotheses about the mechanisms of persistent activity. Here I focus on how regional variations in the pyramidal cell phenotype may determine the complexity of cortical circuitry and, in turn, influence neural activity. Data obtained from thousands of individually injected pyramidal cells in sensory, motor, association and executive cortex reveal marked differences in the numbers of putative excitatory inputs received by these cells. Pyramidal cells in prefrontal cortex have, on average, up to 23 times more dendritic spines than those in the primary visual area. I propose that without these specializations in the structure of pyramidal cells, and the circuits they form, human cognitive processing would not have evolved to its present state. I also present data from both New World and Old World monkeys that show varying degrees of complexity in the pyramidal cell phenotype in their prefrontal cortices, suggesting that cortical circuitry and, thus, cognitive styles are evolving independently in different species.
引用
收藏
页码:1124 / 1138
页数:15
相关论文
共 215 条
[1]   The role of dendrites in auditory coincidence detection [J].
Agmon-Snir, H ;
Carr, CE ;
Rinzel, J .
NATURE, 1998, 393 (6682) :268-272
[2]   STIMULUS SPECIFIC RESPONSES FROM BEYOND THE CLASSICAL RECEPTIVE-FIELD - NEUROPHYSIOLOGICAL MECHANISMS FOR LOCAL GLOBAL COMPARISONS IN VISUAL NEURONS [J].
ALLMAN, J ;
MIEZIN, F ;
MCGUINNESS, E .
ANNUAL REVIEW OF NEUROSCIENCE, 1985, 8 :407-430
[3]  
AMIT DJ, 1995, BEHAV BRAIN SCI, V18, P617, DOI 10.1017/S0140525X00040164
[4]   CORTICOCORTICAL CONNECTIONS OF ANATOMICALLY AND PHYSIOLOGICALLY DEFINED SUBDIVISIONS WITHIN THE INFERIOR PARIETAL LOBULE [J].
ANDERSEN, RA ;
ASANUMA, C ;
ESSICK, G ;
SIEGEL, RM .
JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 296 (01) :65-113
[5]  
Angelucci A, 2002, PROG BRAIN RES, V136, P373
[6]  
[Anonymous], 1995, ASTONISHING HYPOTHES
[7]  
[Anonymous], PREFRONTAL CORTEX EX
[8]  
[Anonymous], CEREBRAL CORTEX
[9]   OCCIPITAL AND INFEROTEMPORAL RESPONSES TO VISUAL SIGNALS IN THE MONKEY [J].
ASHFORD, JW ;
FUSTER, JM .
EXPERIMENTAL NEUROLOGY, 1985, 90 (02) :444-466
[10]   ARCHITECTURE AND INTRINSIC CONNECTIONS OF THE PREFRONTAL CORTEX IN THE RHESUS-MONKEY [J].
BARBAS, H ;
PANDYA, DN .
JOURNAL OF COMPARATIVE NEUROLOGY, 1989, 286 (03) :353-375