Histone stoichiometry and DNA circularization in archaeal nucleosomes

被引:33
作者
Bailey, KA
Chow, CS
Reeve, JN
机构
[1] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA
[2] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA
关键词
D O I
10.1093/nar/27.2.532
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recombinant (r)HMfB (archaeal (c) under bar istone B from (M) under bar ethanothermus (g) under bar ervidus) formed complexes with increasing stability with DNA molecules increasing in length from 52 to 100 bp but not with a 39 bp molecule. By using I-125-labeled rHMfB-YY (an rHMfB variant with I31Y and M35Y replacements) and P-32-labeled 100 bp DNA, these complexes, designated archaeal nucleosomes, have been shown to contain an archaeal histone tetramer. Consistent with DNA bending and wrapping, addition of DNA ligase to archaeal nucleosomes assembled with 88 and 128 bp DNAs resulted in covalently-closed monomeric circular DNAs which, following histone removal, were positively supercoiled based on their electrophoretic mobilities in the presence of ethidium bromide before and after relaxation by calf thymus topoisomerase I. Ligase addition to mixtures of rHMfB with 53 or 30 bp DNA molecules also resulted in circular DNAs but these were circular dimers and trimers, These short DNA molecules apparently had to be ligated into longer linear multimers for assembly into archaeal nucleosomes and ligation into circles. rHMfB assembled into archaeal nucleosomes at lower histone to DNA ratios with the supercoiled, circular ligation product than with the original 88 bp linear version of this molecule. Archaeal histones are most similar to the globular histone fold region of eukaryal histone H4, and the results reported are consistent with archaeal nucleosomes resembling the structure formed by eukaryal histone (H3+H4)(2) tetramers.
引用
收藏
页码:532 / 536
页数:5
相关论文
共 41 条