Melting behavior of one-dimensional zirconium nanowire

被引:29
作者
Hui, L [1 ]
Wang, BL
Wang, JL
Wang, GH
机构
[1] Univ Trent, Dept Phys, I-38050 Trento, Italy
[2] Univ Trent, INFM, I-38050 Trento, Italy
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[5] Shandong Univ, Minist Educ, Key Lab Liquid Struct & Hered Mat, Jinan 250061, Peoples R China
关键词
D O I
10.1063/1.1640613
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we analyze the melting behavior of zirconium nanowire using the results of a series of molecular dynamics simulations. Our calculation employs a well-fitted, tight-binding many-body potential for zirconium atoms. The melting point of the nanowire is predicted by the root-mean-square displacements for inner and outer shells. Our simulations predict two melting behaviors: one is the inner melting and the other is the outer melting. Our results reveal that the melting of nanowire starts from the inner shell atoms. The melting point of zirconium nanowire is lower than the bulk value (2125 K). Moreover, the melting point of the inner shell is lower than that of the outer shell. A coexistence of crystal and liquid units is observed in the melting process of nanowire. An investigation of local clusters is carried out to further analyze the melting mechanism of the nanowire. The presence of the local clusters 1331, 1321, 1211, etc. is an indication of disordered structures. The pair and angular correlation functions are also presented for the analysis of the melting behavior. It is not only the diffusion of single atom but the diffusion of clusters result in the occurrence of the melting. (C) 2004 American Institute of Physics.
引用
收藏
页码:3431 / 3438
页数:8
相关论文
共 27 条
[1]   Structure and stability of finite gold nanowires [J].
Bilalbegovic, G .
PHYSICAL REVIEW B, 1998, 58 (23) :15412-15415
[2]   Structures and melting in infinite gold nanowires [J].
Bilalbegovic, G .
SOLID STATE COMMUNICATIONS, 2000, 115 (02) :73-76
[3]   TIGHT-BINDING POTENTIALS FOR TRANSITION-METALS AND ALLOYS [J].
CLERI, F ;
ROSATO, V .
PHYSICAL REVIEW B, 1993, 48 (01) :22-33
[4]   Electronic properties of ultra-thin aluminum nanowires [J].
Di Tolla, F ;
Dal Corso, A ;
Torres, JA ;
Tosatti, E .
SURFACE SCIENCE, 2000, 454 (01) :947-951
[5]   Atomistic simulation of the stretching of nanoscale metal wires [J].
Finbow, GM ;
LyndenBell, RM ;
McDonald, IR .
MOLECULAR PHYSICS, 1997, 92 (04) :705-714
[6]   COMPLEX ALLOY STRUCTURES REGARDED AS SPHERE PACKINGS .1. DEFINITIONS AND BASIC PRINCIPLES [J].
FRANK, FC ;
KASPER, JS .
ACTA CRYSTALLOGRAPHICA, 1958, 11 (03) :184-190
[7]   PREMELTING OF THIN WIRES [J].
GULSEREN, O ;
ERCOLESSI, F ;
TOSATTI, E .
PHYSICAL REVIEW B, 1995, 51 (11) :7377-7380
[8]   Noncrystalline structures of ultrathin unsupported nanowires [J].
Gulseren, O ;
Ercolessi, F ;
Tosatti, E .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3775-3778
[9]   MOLECULAR-DYNAMICS STUDY OF MELTING AND FREEZING OF SMALL LENNARD-JONES CLUSTERS [J].
HONEYCUTT, JD ;
ANDERSEN, HC .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (19) :4950-4963
[10]   Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase [J].
Hong, BH ;
Bae, SC ;
Lee, CW ;
Jeong, S ;
Kim, KS .
SCIENCE, 2001, 294 (5541) :348-351