Physical-chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes

被引:118
作者
Hoek, Eric M. V. [1 ,3 ]
Ghosh, Asim K. [1 ,3 ]
Huang, Xiaofei [1 ,3 ]
Liong, Monty [2 ,3 ]
Zink, Jeffrey I. [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
关键词
Ultrafiltration; Mixed-matrix; Nanocomposite; Silver; Zeolite; Polysulfone; Poly(acrylonitrile); SURFACE MODIFICATION; FLUX DECLINE; UF MEMBRANES; POLYACRYLONITRILE; IMMOBILIZATION; POLYMERIZATION; MECHANISMS; IMPACTS; SILICA;
D O I
10.1016/j.desal.2011.04.008
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Herein we report on the formation and characterization of mixed-matrix ultrafiltration (UP) membranes hand-cast by nonsolvent induced phase inversion. We evaluated nanometer-to-micrometer sized inorganic fillers (silver, copper, silica, zeolite, and silver-zeolite) materials with polysulfone (PSf) as the polymeric dispersing matrix. In general, mixed-matrix membranes were rougher, more hydrophilic, and more mechanically robust. Only sub-micron zeolite-PSf mixed-matrix membranes exhibited simultaneous improvements in water permeability and solute selectivity; all other mixed-matrix membranes were more permeable, but less selective due to defects associated with poor polymer-filler binding. Protein and bacterial fouling resistance of mixed-matrix membranes containing silver, zeolite, and silver-zeolite nanoparticles were compared to a low-fouling, poly(acrylonitrile) (PAN) UF membrane. Zeolite and silver containing membranes exhibited better protein fouling resistance (due to higher hydrophilicity), whereas silver and silver-zeolite based membranes produce better bacterial fouling resistance due to antimicrobial properties. Overall, zeolite-PSf and silver exchanged zeolite-PSf membranes offered the best combination of improved permeability, selectivity, and fouling resistance superior to the commercial PAN membrane. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 46 条
[31]   Terminology for membranes and membrane processes [J].
Koros, WJ ;
Ma, YH ;
Shimidzu, T .
PURE AND APPLIED CHEMISTRY, 1996, 68 (07) :1479-1489
[32]   Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes [J].
Lind, Mary L. ;
Ghosh, Asim K. ;
Jawor, Anna ;
Huang, Xiaofei ;
Hou, William ;
Yang, Yang ;
Hoek, Eric M. V. .
LANGMUIR, 2009, 25 (17) :10139-10145
[33]   Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes [J].
Lind, Mary Laura ;
Jeong, Byeong-Heon ;
Subramani, Arun ;
Huang, Xiaofei ;
Hoek, Eric M. V. .
JOURNAL OF MATERIALS RESEARCH, 2009, 24 (05) :1624-1631
[34]   Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs [J].
Lu, Jie ;
Liong, Monty ;
Zink, Jeffrey I. ;
Tamanoi, Fuyuhiko .
SMALL, 2007, 3 (08) :1341-1346
[35]   Challenges in forming successful mixed matrix membranes with rigid polymeric materials [J].
Mahajan, R ;
Burns, R ;
Schaeffer, M ;
Koros, WJ .
JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 86 (04) :881-890
[36]   Hybrid membrane materials comprising organic polymers with rigid dispersed phases [J].
Moore, TT ;
Mahajan, R ;
Vu, DQ ;
Koros, WJ .
AICHE JOURNAL, 2004, 50 (02) :311-321
[37]  
Mulder M., 1998, Basic Principles of Membrane Technology
[38]   Surface modification of poly(acrylonitrile-co-maleic acid) membranes by the immobilization of poly(ethylene glycol) [J].
Nie, FQ ;
Xu, ZK ;
Yang, Q ;
Wu, J ;
Wan, LS .
JOURNAL OF MEMBRANE SCIENCE, 2004, 235 (1-2) :147-155
[39]   Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes [J].
Park, JY ;
Acar, MH ;
Akthakul, A ;
Kuhlman, W ;
Mayes, AM .
BIOMATERIALS, 2006, 27 (06) :856-865
[40]   A review of water treatment membrane nanotechnologies [J].
Pendergast, MaryTheresa M. ;
Hoek, Eric M. V. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (06) :1946-1971