Photochemical evolution of submicron aerosol chemical composition in the Tokyo megacity region in summer

被引:23
作者
Miyakawa, T. [1 ]
Takegawa, N. [1 ]
Kondo, Y. [1 ]
机构
[1] Univ Tokyo, Adv Sci & Technol Res Ctr, Meguro Ku, Tokyo 1538904, Japan
关键词
D O I
10.1029/2007JD009493
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We investigate the chemical transformation of submicron aerosol in the Tokyo megacity region in summer. An Aerodyne quadrupole aerosol mass spectrometer (AMS) was deployed both at an urban site in Tokyo (35 degrees 39'N, 139 degrees 40'E) and a suburban site (downwind site) in Saitama (36 degrees 05'N, 139 degrees 33'E) in the summer of 2004. The temporal evolution of size-resolved chemical compositions of submicron (PM1) aerosols during photochemical smog episodes are investigated using the photochemical age derived from the combination of alkyl nitrate-to-hydrocarbon ratio and NOz/NOy ratio (where NOz is defined as the total reactive nitrogen oxides (NOy) excluding nitrogen oxides (NOx)). The photochemical age observed at the downwind site was about 12 h in most aged air. Organic aerosols (OA) and sulfate (SO42-) were major constituents of PM1 aerosols (40-50% and 20-30%, respectively) at both sites during the observation period and their fractions showed no large variation with the NOz/NOy ratio. Mass ratios of OA and SO42- to black carbon (BC) largely increased with the NOz/NOy ratio (by factors of similar to 3 and similar to 2, respectively), indicating the significance of secondary formation of these compounds in controlling PM1 mass concentrations. We also investigate the photochemical evolution of OA mass spectra observed by the AMS. The mass-to-charge ratio (m/z) peaks of organic compounds relative to BC mass generally showed an increase with the NOz/NOy ratio. These increasing trends vary significantly for different m/z peaks, suggesting the complexity of the temporal evolution of organic functional groups. The m/z 44 and 45 peaks, which are good markers of carboxylic groups in organic particles, showed larger increases than any other m/z peaks, suggesting an efficient formation of carboxylic functional groups on a timescale of hours during the measurement period.
引用
收藏
页数:18
相关论文
共 69 条
  • [1] A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber
    Alfarra, M. R.
    Paulsen, D.
    Gysel, M.
    Garforth, A. A.
    Dommen, J.
    Prevot, A. S. H.
    Worsnop, D. R.
    Baltensperger, U.
    Coe, H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 : 5279 - 5293
  • [2] Characterization of urban and rural organic particulate in the lower Fraser valley using two aerodyne aerosol mass spectrometers
    Alfarra, MR
    Coe, H
    Allan, JD
    Bower, KN
    Boudries, H
    Canagaratna, MR
    Jimenez, JL
    Jayne, JT
    Garforth, AA
    Li, SM
    Worsnop, DR
    [J]. ATMOSPHERIC ENVIRONMENT, 2004, 38 (34) : 5745 - 5758
  • [3] Quantitative sampling using an Aerodyne aerosol mass spectrometer - 1. Techniques of data interpretation and error analysis
    Allan, JD
    Jimenez, JL
    Williams, PI
    Alfarra, MR
    Bower, KN
    Jayne, JT
    Coe, H
    Worsnop, DR
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D3)
  • [4] A generalised method for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer data
    Allan, JD
    Delia, AE
    Coe, H
    Bower, KN
    Alfarra, MR
    Jimenez, JL
    Middlebrook, AM
    Drewnick, F
    Onasch, TB
    Canagaratna, MR
    Jayne, JT
    Worsnop, DR
    [J]. JOURNAL OF AEROSOL SCIENCE, 2004, 35 (07) : 909 - 922
  • [5] Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach
    Aumont, B
    Szopa, S
    Madronich, S
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 : 2497 - 2517
  • [6] Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer
    Bahreini, R
    Keywood, MD
    Ng, NL
    Varutbangkul, V
    Gao, S
    Flagan, RC
    Seinfeld, JH
    Worsnop, DR
    Jimenez, JL
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (15) : 5674 - 5688
  • [7] Secondary organic aerosols from anthropogenic and biogenic precursors
    Baltensperger, U
    Kalberer, M
    Dommen, J
    Paulsen, D
    Alfarra, MR
    Coe, H
    Fisseha, R
    Gascho, A
    Gysel, M
    Nyeki, S
    Sax, M
    Steinbacher, M
    Prevot, ASH
    Sjögren, S
    Weingartner, E
    Zenobi, R
    [J]. FARADAY DISCUSSIONS, 2005, 130 : 265 - 278
  • [8] EVOLUTION OF ALKYL NITRATES WITH AIR-MASS AGE
    BERTMAN, SB
    ROBERTS, JM
    PARRISH, DD
    BUHR, MP
    GOLDAN, PD
    KUSTER, WC
    FEHSENFELD, FC
    MONTZKA, SA
    WESTBERG, H
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D11) : 22805 - 22813
  • [9] Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite
    Cabada, JC
    Rees, S
    Takahama, S
    Khlystov, A
    Pandis, SN
    Davidson, CI
    Robinson, AL
    [J]. ATMOSPHERIC ENVIRONMENT, 2004, 38 (20) : 3127 - 3141
  • [10] Chase studies of particulate emissions from in-use New York City vehicles
    Canagaratna, MR
    Jayne, JT
    Ghertner, DA
    Herndon, S
    Shi, Q
    Jimenez, JL
    Silva, PJ
    Williams, P
    Lanni, T
    Drewnick, F
    Demerjian, KL
    Kolb, CE
    Worsnop, DR
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 2004, 38 (06) : 555 - 573