Non-identity-check is QMA-complete

被引:34
作者
Janzing, D [1 ]
Wocjan, P [1 ]
Beth, T [1 ]
机构
[1] Univ Karlsruhe, D-76131 Karlsruhe, Germany
关键词
Quantum complexity theory;
D O I
10.1142/S0219749905001067
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe a computational problem that is complete for the complexity class QMA, a quantum generalization of NP. It arises as a natural question in quantum computing and quantum physics. "Non-identity-check" is the following decision problem: Given a classical description of a quantum circuit (a sequence of elementary gates), determine whether it is almost equivalent to the identity. Explicitly, the task is to decide whether the corresponding unitary is close to a complex multiple of the identity matrix with respect to the operator norm. We show that this problem is QMA-complete. A generalization of this problem is "non-equivalence check": given two descriptions of quantum circuits and a description of a common invariant subspace, decide whether the restrictions of the circuits to this subspace almost coincide. We show that non-equivalence check is also in QMA and hence QMA-complete.
引用
收藏
页码:463 / 473
页数:11
相关论文
共 15 条
[1]  
Aaronson Scott., COMPLEXITY ZOO
[2]  
AHARONOV D, QUANTPH0210077
[3]  
Cleve R, 1998, P ROY SOC A-MATH PHY, V454, P339, DOI 10.1002/(SICI)1099-0526(199809/10)4:1<33::AID-CPLX10>3.0.CO
[4]  
2-U
[5]   Implementation of universal control on a decoherence-free qubit - art. no. 5 [J].
Fortunato, EM ;
Viola, L ;
Hodges, J ;
Teklemariam, G ;
Cory, DG .
NEW JOURNAL OF PHYSICS, 2002, 4 :5.1-5.20
[6]  
Garey M. S., 1979, COMPUTERS INTRACTIBI
[7]  
Kempe J, 2003, QUANTUM INFORM COMPU, V3, P258
[8]  
KEMPE J, 2004, P 24 ANN C FDN SOFTW, P372
[9]  
Kitaev A. Yu., 2002, CLASSICAL QUANTUM CO, V47
[10]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744