Evaluation of automated lung nodule detection on low-dose computed tomography scans from a lung cancer screening program

被引:29
作者
Armato, SG
Roy, AS
MacMahon, H
Li, F
Doi, K
Sone, S
Altman, MB
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[2] JA Azumi Gen Hosp, Nagano, Japan
关键词
computer-aided diagnosis (CAD); computed tomography (CT); image processing; lung neoplasms; lung nodule; cancer screening; lung CT;
D O I
10.1016/j.acra.2004.10.061
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives. The purpose of this study was to evaluate the performance of a fully automated lung nodule detection method in a large database of low-dose computed tomography (CT) scans from a lung cancer screening program. Because nodules demonstrate a spectrum of radiologic appearances, the performance of the automated method was evaluated on the basis of nodule malignancy status, size, subtlety, and radiographic opacity. Materials and Methods. A database of 393 thick-section (10 mm) low-dose CT scans was collected. Automated lung nodule detection proceeds in two phases: gray-level thresholding for the initial identification of nodule candidates, followed by the application of a rule-based classifier and linear discriminant analysis to distinguish between candidates that correspond to actual lung nodules and candidates that correspond to non-nodules. Free-response receiver operating characteristic analysis was used to evaluate the performance of the method based on a jackknife training/testing approach. Results. An overall nodule detection sensitivity of 70% (330 of 470) was attained with an average of 1.6 false-positive detections per section. At the same false-positive rate, 83% (57 of 69) of the malignant lung nodules in the database were detected. When the method was trained specifically for malignant nodules, a sensitivity of 80% (55 of 69) was attained with 0.85 false-positives per section. Conclusion. We have evaluated an automated lung nodule detection method with a large number of low-dose CT scans from a lung cancer screening program. An overall sensitivity of 80% for malignant nodules was achieved with 0.85 false-positive detections per section. Such a computerized lung nodule detection method is expected to become an important part of CT-based lung cancer screening programs.
引用
收藏
页码:337 / 346
页数:10
相关论文
共 47 条
[1]   Lung image database consortium: Developing a resource for the medical imaging research community [J].
Armato, SG ;
McLennan, G ;
McNitt-Gray, MF ;
Meyer, CR ;
Yankelevitz, D ;
Aberle, DR ;
Henschke, CI ;
Hoffman, EA ;
Kazerooni, EA ;
MacMahon, H ;
Reeves, AP ;
Croft, BY ;
Clarke, LP .
RADIOLOGY, 2004, 232 (03) :739-748
[2]   Automated lung nodule classification following automated nodule detection on CT: A serial approach [J].
Armato, SG ;
Altman, MB ;
Wilkie, J ;
Sone, S ;
Li, F ;
Doi, K ;
Roy, AS .
MEDICAL PHYSICS, 2003, 30 (06) :1188-1197
[3]   Automated detection of lung nodules in CT scans:: Effect of image reconstruction algorithm [J].
Armato, SG ;
Altman, MB ;
La Rivière, PJ .
MEDICAL PHYSICS, 2003, 30 (03) :461-472
[4]   Lung cancer: Performance of automated lung nodule detection applied to cancers missed in a CT screening program [J].
Armato, SG ;
Li, F ;
Giger, ML ;
MacMahon, H ;
Sone, S ;
Doi, K .
RADIOLOGY, 2002, 225 (03) :685-692
[5]   Automated detection of lung nodules in CT scans: Preliminary results [J].
Armato, SG ;
Giger, ML ;
MacMahon, H .
MEDICAL PHYSICS, 2001, 28 (08) :1552-1561
[6]   Analysis of a three-dimensional lung nodule detection method for thoracic CT scans [J].
Armato, SG ;
Giger, ML ;
MacMahon, H .
MEDICAL IMAGING 2000: IMAGE PROCESSING, PTS 1 AND 2, 2000, 3979 :103-109
[7]   Three-dimensional approach to lung nodule detection in helical CT [J].
Armato, SG ;
Giger, ML ;
Blackburn, JT ;
Doi, K ;
MacMahon, H .
MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 :553-559
[8]   Glossary of terms for CT of the lungs: Recommendations of the Nomenclature Committee of the Fleischner Society [J].
Austin, JHM ;
Muller, NL ;
Friedman, PJ ;
Hansell, DM ;
Naidich, DP ;
RemyJardin, M ;
Webb, WR ;
Zerhouni, EA .
RADIOLOGY, 1996, 200 (02) :327-331
[9]   Patient-specific models for lung nodule detection and surveillance in CT images [J].
Brown, MS ;
McNitt-Gray, MF ;
Goldin, JG ;
Suh, RD ;
Sayre, JW ;
Aberle, DR .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (12) :1242-1250
[10]  
BUNCH PC, 1977, P SOC PHOTO-OPT INS, V127, P124