Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase

被引:62
作者
Beechem, JM [1 ]
Otto, MR
Bloom, LB
Eritja, R
Reha-Krantz, LJ
Goodman, MF
机构
[1] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[2] Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada
[3] European Mol Biol Org, Heidelberg, Germany
[4] Univ So Calif, HEDCO Mol Biol Lab, Dept Biol Sci, Los Angeles, CA 90089 USA
关键词
D O I
10.1021/bi980074b
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The binding of bacteriophage T4 DNA polymerase (T4 pol) to primer-template DNA with 2-aminopurine (2AP) located at the primer terminus results in the formation of a hyperfluorescent 2AP state. Changes in this hyperfluorescent state were utilized to investigate the fractional concentration of primer-tem;plates bound at the exonuclease and statically quenched polymerase sites. In the absence of Mg2+, a hydrophobic exonuclease site dominates over the polymerase site for possession of the primer terminus. The fractional concentration of primer termini in the exonuclease site was found to be 64 and 84% for correct (AP-T) and mismatched (AP-C) primer-templates, respectively. Exonuclease-deficient mutants, polymerase-switching mutants, and nucleoside triphosphates all shift this equilibrium toward the polymerase site. Synthesis of stereospecific hydrolysis resistant phosphorothioate 2AP-labeled DNA allowed Mg2+ ion binding titrations to be performed in the presence of bound DNA without the complication of the excision reaction. High- and low-affinity Mg2+ binding sites were observed in the presence of bound double-stranded (ds) DNA, with dissociation constants in the micromolar (WT K-d = 5.1 mu M) and millimolar (WT Kd = 2.5 mM) concentration ranges. Mg2+ binding was found to be a key "conformational switch" for T4 pol. As the high-affinity Mg2+ binding sites are filled, the primer terminus migrates from the exonuclease site to a highly based stacked polymerase active site. Filling the low-affinity Mg2+ sites further shifts the primer terminus into the polymerase site. As the low-affinity Mg2+ sites are filled, T4 pol "loosens its grip" on the primer terminus, as shown by a large amplitude increase in the nanosecond rotational mobility of 2AP within the bound T4 complex. The hyperfluorescent exonuclease site is spatially localized to 2AP positioned on the primer end. The penultimate (n - 1) position; as well as n - 2 and n - 5 positions, reveals no detectable fluorescent enhancement upon binding. The observed position-dependent fluorescence data. when combined with time-resolved total-intensity and anisotropy data, suggest that the creation of the hyperfluorescent state is caused by phenylalanine 120 (F120) of T4 pol intercalating into 2AP primers much like that observed for phenylalanine 123 of RB69 DNA polymerase intercalating into deoxythymidine primers [Wang, J., et al. (1997) Cell 89, 1087-1099]. As Mg2+ binds in the exonuclease site of T4 pol, the primer terminus appears to be "pulled backward" into the active site, decreasing the concentration of F120-intercalated primer termini, and bringing the exonuclease active site residues closer to the primer terminus scissile phosphate bond.
引用
收藏
页码:10144 / 10155
页数:12
相关论文
共 32 条
[1]  
BEECHEM JM, 1991, FLUORESCENCE SPECTRO, V2, pCH5
[2]   STRUCTURE OF DNA-POLYMERASE-I KLENOW FRAGMENT BOUND TO DUPLEX DNA [J].
BEESE, LS ;
DERBYSHIRE, V ;
STEITZ, TA .
SCIENCE, 1993, 260 (5106) :352-355
[3]   PRE-STEADY-STATE KINETIC-ANALYSIS OF SEQUENCE-DEPENDENT NUCLEOTIDE EXCISION BY THE 3'-EXONUCLEASE ACTIVITY OF BACTERIOPHAGE-T4 DNA-POLYMERASE [J].
BLOOM, LB ;
OTTO, MR ;
ERITJA, R ;
REHAKRANTZ, LJ ;
GOODMAN, MF ;
BEECHEM, JM .
BIOCHEMISTRY, 1994, 33 (24) :7576-7586
[4]   INFLUENCE OF 5'-NEAREST NEIGHBORS ON THE INSERTION KINETICS OF THE FLUORESCENT NUCLEOTIDE ANALOG 2-AMINOPURINE BY KLENOW FRAGMENT [J].
BLOOM, LB ;
OTTO, MR ;
BEECHEM, JM ;
GOODMAN, MF .
BIOCHEMISTRY, 1993, 32 (41) :11247-11258
[5]   KINETIC CHARACTERIZATION OF THE POLYMERASE AND EXONUCLEASE ACTIVITIES OF THE GENE-43 PROTEIN OF BACTERIOPHAGE-T4 [J].
CAPSON, TL ;
PELISKA, JA ;
KABOORD, BF ;
FREY, MW ;
LIVELY, C ;
DAHLBERG, M ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1992, 31 (45) :10984-10994
[6]  
CLAYTON LK, 1979, J BIOL CHEM, V254, P1902
[7]  
CONNOLLY BA, 1991, OLIGONUCLEOTIDES ANA, P162
[8]   Structure of Taq polymerase with DNA at the polymerase active site [J].
Eom, SH ;
Wang, JM ;
Steitz, TA .
NATURE, 1996, 382 (6588) :278-281
[9]   STRUCTURE-ENERGY ANALYSIS OF THE ROLE OF METAL-IONS IN PHOSPHODIESTER BOND HYDROLYSIS BY DNA-POLYMERASE-I [J].
FOTHERGILL, M ;
GOODMAN, MF ;
PETRUSKA, J ;
WARSHEL, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (47) :11619-11627
[10]   COCRYSTAL STRUCTURE OF AN EDITING COMPLEX OF KLENOW FRAGMENT WITH DNA [J].
FREEMONT, PS ;
FRIEDMAN, JM ;
BEESE, LS ;
SANDERSON, MR ;
STEITZ, TA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (23) :8924-8928