Molecular data are ideal for exploring evolutionary history because of its universality, stochasticity, and abundance. These features provide a means of exploring the evolutionary history of all organisms (including those that do not tend to leave fossils), potentially within a statistical framework that allows testing of evolutionary hypotheses. However, the discrepancy between molecular and paleontological dates for three key "explosive" radiations inferred from the fossil record-the Cambrian explosion of animal phyla and the post-KT radiations of modern orders of mammals and birds-have led to a reexamination of the assumptions on which molecular dates are based. Could variation in the rate of molecular evolution, perhaps associated with "explosive" radiations, cause overestimation of diversification dates? Here I examine four hypothetical causes of fast molecular rates in explosive radiations-body size, morphological rate, speciation rate, and ecological diversification-using available empirical evidence on patterns of variation in rate of molecular evolution.